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Abstract

We examine the interplay between two important policies that impact the environmental perfor-

mance in a production setting: inspections performed by a regulator and noncompliance disclosure

by a manufacturing �rm. Expecting that a penalty will be levied once an inspection discovers

noncompliance, the �rm decides whether it should disclose a random occurrence of noncompliance.

Anticipating this, the regulator determines the inspection frequency and the penalty amount that

minimize environmental and social costs, performing either periodic inspections or random inspec-

tions. We study this problem by developing a novel analytical framework that combines the features

from reliability theory and law enforcement economics. We �nd that, contrary to a common belief,

a threat of increased penalty does not always lessen the need for costly inspections; there are situa-

tions where the regulator should invest in frequent inspections to complement the penalty. We also

�nd that, counter to intuition, surprising the �rm with random inspections is not always preferred

to inspecting the �rm periodically according to a set schedule.

Subject classi�cation: Environment. Reliability: inspection. Games/group decisions: noncoopera-

tive.
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We examine the interplay between two important policies that impact the environmental performance
in a production setting: inspections performed by a regulator and noncompliance disclosure by a manu-
facturing �rm. Expecting that a penalty will be levied once an inspection discovers noncompliance, the
�rm decides whether it should disclose a random occurrence of noncompliance. Anticipating this, the
regulator determines the inspection frequency and the penalty amount that minimize environmental
and social costs, performing either periodic inspections or random inspections. We study this problem
by developing a novel analytical framework that combines the features from reliability theory and law
enforcement economics. We �nd that, contrary to a common belief, a threat of increased penalty does
not always lessen the need for costly inspections; there are situations where the regulator should invest
in frequent inspections to complement the penalty. We also �nd that, counter to intuition, surprising
the �rm with random inspections is not always preferred to inspecting the �rm periodically according
to a set schedule.

1 Introduction

Enforcement of environmental regulations is fraught with challenges. Not only do the regulatory bodies

such as the Environmental Protection Agency operate under budget and resource constraints that limit

their ability to reign on potential violators, they also face a nontrivial problem that renders enforcement

particularly di¢ cult: information acquisition. Unlike in many settings where a �rm�s private knowledge

or action is re�ected in performance outcomes that can be directly observed (for example, a user of

equipment can estimate its reliability after experiencing downtimes during its operation), without

direct consumers of environmental outputs, the indicators of a �rm�s regulation compliance are not

readily available. Indeed, many environmental violations� especially those committed by small �rms�

go unreported because their individual output is not large and visible enough to trigger an alarm.

Collectively, however, the sum of individual contributions may cause serious and potentially permanent

damages to the environment (Kolstad 2011).

Under such a circumstance, the regulator who wishes to obtain information about a �rm�s compli-

ance status would have no realistic choice other than to inspect the �rm on site. Inspections are costly,

especially because most violations occur sporadically in dispersed locations. These logistical di¢ cul-

ties are compounded by the fact that inspections are imperfect, in many cases due to the random
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nature of violations that occur despite the �rms�best intentions. Such instances include: accidental

release of untreated wastewater, excessive carbon emissions due to control system malfunctions, and

toxic chemical spills following natural disasters. As Beavis and Walker (1983) put it, �Dischargers [of

pollutants] are frequently unable to control with any great degree of accuracy the quantity and quality

of wastes associated with speci�c levels of their productive activities.� According to Malik (1993),

�Pollution emissions by �rms commonly depend on stochastic events such as equipment malfunctions,

variations in input quality, and process upsets.�In the presence of these uncertainties, an enforcement

authority faces a challenge in devising cost-e¤ective inspection strategies.

The tradeo¤ between cost of inspections and the social bene�t of environmental preservation has

been explored in the academic literature, starting from a broader context of law enforcements. One of

the most well-known economic insights coming from this literature is that inspection intensity and the

degree of sanction act as substitutes. That is, the regulator can save the cost of inspections without

a¤ecting a potential violator�s behavior if the latter is threatened with a large penalty; the larger

the penalty, the lower the intensity of inspections needed.1 This intuitive notion of substitutability

is regarded as fundamental, as evidenced by the following quote from an environmental economics

textbook: �Increased monitoring activity by enforcement o¢ cials will have an e¤ect similar to increased

punishment levels... In theory, higher penalties can always substitute for lowered enforcement e¤orts�

(Goodstein 2011, p. 286).

In this paper we reexamine this claim from a new perspective. In doing so, we develop a novel

analytical framework that operationalizes the optimal enforcement decisions in the presence of sto-

chastically evolving compliance states, inspired by the �inspection models� found in the theory of

reliability. These model features are naturally built in a production setting where a manufacturing

�rm undergoes occasional environmental violations and restores compliance after each occurrence. We

enrich this framework by adding an element of incentives: the �rm�s voluntary disclosure of noncom-

pliance. That is, the �rm makes a self-interested decision to either keep silence about an unintentional

violation or disclose it to �come clean.�Anticipating such a behavior, the regulator employs one of

the two inspection policies: periodic inspections and random inspections. Under periodic inspections

the regulator performs inspections according to a set schedule of constant intervals, whereas under

random inspections the regulator randomizes the inspection intervals by sampling from a probability

distribution. This new model framework allows us to address the following research questions that

have been overlooked in the literature. Given that environmental violations occur randomly over time

and that the �rm may disclose noncompliance selectively, should the regulator perform periodic in-

spections or random inspections? How does the �rm�s opportunistic disclosure behavior impact the
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relationship between the two enforcement levers, inspection intensity and penalty?

We �nd that, contrary to the common belief found in the literature, inspection intensity and penalty

are not necessarily substitutes; there are situations where the two act as complements. That is, the

regulator may have to complement penalty with frequent inspections� stick and more stick instead of

carrot and stick� in order to induce the desired behavior of the �rm and minimize the social cost and

environmental damage. We also �nd that, surprisingly, the regulator may �nd periodic inspections

more cost-e¤ective than random inspections. This is in spite of the fact that periodic inspections

provide the �rm with perfect knowledge about the inspection schedule whereas random inspections

do not; even though better information may encourage the �rm to act more opportunistically, such

an adverse e¤ect does not necessarily lead to a net loss in e¢ ciency. We identify the conditions

under which one inspection policy is preferred to the other, and o¤er managerial insights and policy

recommendations.

2 Related Literature

Our model integrates the elements from two distinct streams of literature which, to the best of our

knowledge, have never been put together in a single problem setting. They are: theory of reliability

and economics of law enforcement. As we demonstrate, the ideas from each of these areas� developed

in isolation over the years� bring new perspectives to the topic of environmental regulation once they

are combined. Among the vast number of articles that have been published in these areas of research,

in this section we survey the most relevant ones that inspired the model presented in this paper.

2.1 Theory of Reliability

Reliability theory concerns itself with evaluating performances of technological systems subject to

random failures. See Barlow and Proschan (1996) and Rausand and Høyland (2004) for overviews of

the foundations and applications of reliability theory. Among many models that have been proposed

in the literature, the ones that have direct relevance to our problem are the models of inspection

policies (Barlow and Proschan 1996, pp. 107-118). These models assume that the state of a system

(i.e., whether the system is functioning or not) is normally invisible to a system operator. As a result,

a system failure is not reported unless it is discovered by an inspection. An operator who wishes to

detect a failure early faces a cost-bene�t tradeo¤ because the chance of detection increases with the

frequency of inspections but inspections are costly to perform. The models suggest optimal inspection

schedules and strategies designed to balance this tradeo¤, based on probabilistic representations of

random failure processes.

A variant of the inspection models particularly relevant to our problem is the �intermittent faults�
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model, in which a system restores itself after each instance of repeated failures (Su et al. 1978,

Nakagawa 2005, pp. 220-224). Thus the system alternates between �on�and �o¤�states stochastically

over time without the intervention of an operator. Due to the random process, detection of a failure is

not guaranteed. The operator�s goal is to maximize the probability of detection by planning a frequent

but cost-e¤ective inspection schedule.

The inspection models� the model of intermittent faults in particular� provide the mathematical

foundations that are well-suited for analyzing the problem of environmental regulation enforcements.

First, a parallel can be made between random system failures and stochastic pollutions, since many

environmental violations occur unexpectedly despite the �rms�best intentions (e.g., when a pollution

control system malfunctions). Second, in most cases inspections are needed to discover environmental

violations, which are often hidden from the public�s view. Third, the repeated nature of environmental

violations and audits is captured in the inspection models, which evaluate long-term strategies for

managing recurring failures. What lacks in the inspection models is the dimension of incentives,

which we discuss next.

2.2 Economics of Law Enforcement

The basic premise of the inspection models, namely that constant monitoring is prohibitive because

inspections are costly, was recognized in the economics literature by Becker (1968). In his model of

probabilistic law enforcement, an enforcement authority combines random audits with sanctions (e.g.,

�nes or imprisonment) in order to maximize the probability of apprehending the violators. A sanction

in�uences the potential violator�s behavior, an element missing in the inspection models. Becker�s

seminal work has been extended in many directions, notably by Kaplow and Shavell (1994) who

incorporate voluntary disclosure. They consider individuals who have committed a socially harmful

act but have an option to self-report it to the authorities. This feature is especially relevant to our

model, as we incorporate self-disclosure of noncompliance .

The ideas introduced in these papers have been reinterpreted in the context of environmental

regulations; see Cohen (1999) for a survey. Of particular relevance to this paper are the articles that

consider enforcements in the presence of stochastic emissions, including Beavis and Walker (1982),

Malik (1993), and Innes (1999). The messages are largely consistent with those from Kaplow and

Shavell (1994) and others in the law enforcement literature, although idiosyncrasies exist. Russell

(1990) is one of the few papers that feature a Markov process in an environmental audit context,

but the focus is on random errors in audits instead of random occurrences of noncompliance. In a

recent article, To¤el and Short (2011) establish hypotheses based on the theoretical predictions from

these works as they empirically test whether the �rms that self-report violations also self-police their
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operations to reduce emissions.

Despite some commonalities shared with these works, this paper distinguishes itself in a number of

important aspects. First, we focus on environmental violations that occur unintentionally, driven by

a random process. These types of violations are common in practice but they have received relatively

little attention in the literature. Second, the way we model uncertainty is more realistic than those

of Malik (1993), Innes (1999), and others. Unlike the stylized representations of random emissions

found in these works, our model features a Markov chain of compliance/noncompliance states that

alternate over time. Third, in contrast to Kaplow and Shavell (1994) and others who represent a

random audit simply as a single probability measure, we bring precision to the mechanics of audits

by modeling repeated inspections that may or may not detect noncompliance. Finally, the �rm in

our model decides not only whether noncompliance should be disclosed but also when it should be

disclosed. This timing aspect has been ignored in the literature, and our model brings new perspectives

by explicitly taking it into account.

2.3 Sustainable Operations

In recent years various issues of sustainability have drawn interests among the researchers in opera-

tions management (OM). Some have investigated traditional topics in environmental economics from

operational perspectives (Sunar and Plambeck 2011, Drake et al. 2012, Alizamir et al. 2012). Others

have studied new topics, including: adoption of green technology (Lobel and Perakis 2011, Avci et al.

2012); generating value over the product life-cycle (Lee 2011, Agrawal et al. 2012); con�guring supply

chains to reduce carbon footprints and be socially responsible (Caro et al. 2012, Cachon 2012, Guo

et al. 2012). Although not framed as sustainability issues, Kim et al. (2010) and Kim and Tomlin

(2012) share similarities with this paper in the modeling approaches based on reliability theory and

the common theme of managing low-probability, high-consequence events.

More closely related to this paper are a number of recent articles that discuss audits and information

disclosure in environmental regulations. Kalkanci et al. (2012) study the environmental impacts of

voluntary and mandatory disclosure rules applied to supply chains. Jira and To¤el (2012) identify

the conditions under which supply chain parties share information about greenhouse gas emissions.

Plambeck and Taylor (2010) is one of the few articles in the OM literature that import ideas from

the law enforcement economics literature, but they focus on issues that exist in a competitive market.

Plambeck and Taylor (2012) study the dynamics that arise when �rms make e¤orts to evade auditing,

the topic we do not address in this paper. However, our �ndings on voluntary disclosure complement

those in Plambeck and Taylor (2012). In sum, this paper is uniquely positioned in terms of research

focus, insights, and the model features that bridge the gap between distinct areas of research.

5



3 Model

3.1 Overview

A �rm (�he�) produces a good and sells it to consumers. Production requires use of an environmentally

harmful substance (�pollutant�), which may be emitted to the environment. A regulator (�she�) is

responsible for enforcing the environmental regulation. Both parties are risk neutral. Production and

sales start at time zero and last over an in�nite horizon. Production runs continuously unless it is

temporarily suspended (more on this later). For the duration in which production is suspended, the

�rm loses a sales opportunity.

At any given moment the �rm is in one of two states: the �rm is said to be in compliance if pollutant

emission is blocked, whereas it is in noncompliance if the pollutant is being emitted. These two states

last for random amounts of time, and they alternate stochastically over time at constant transition

rates.2 The �rm has complete visibility to the state but the regulator does not. There are two ways in

which noncompliance is reported to the regulator: either the regulator discovers noncompliance after

she performs an inspection (detection) or the �rm preemptively informs it (disclosure). Note that

we do not consider the �rm�s willful violations to save costs or attempts to evade inspections, the

subjects beyond the scope of this paper. We assume that an inspection reveals the state immediately

and that noncompliance is costlessly veri�ed once it is disclosed.3 Once noncompliance is reported,

the regulator learns its start and end times (which together de�ne the boundaries of the reported

noncompliance episode) as she receives details of a violation while being kept informed of the progress

made in restoring compliance. If the �rm does not disclose a noncompliance episode, it may or may not

be detected by the regulator because the episode lasts for a random amount of time; detection occurs

if an inspection arrives before the episode concludes, whereas detection does not occur if the episode

falls completely within the interval between two successive inspections. See Figure 1 for illustrations.

Production and inspections are suspended immediately after noncompliance is reported and remain

suspended until compliance is restored. (If this assumption is violated, suboptimal outcomes arise in

which unnecessary inspections are performed and avoidable emissions accumulate.) Both activities

resume upon compliance restoration. Because a noncompliance episode may be reported after some

time has passed since it started, as is the case when it is reported via detection, an episode may consist

of two successive portions: unsuspended noncompliance and suspended noncompliance. Pollutant is

emitted in the �rst portion but not in the second portion, during which there is no production output.

The regulator utilizes two enforcement levers: inspections and penalty. The latter is imposed

upon discovery of noncompliance. Before time zero the regulator sets the inspection frequency and
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Figure 1: Illustrations of detection and disclosure instances. Compliance and noncompliance states
alternate over time, while the regulator performs an inspection every T time units unless it is suspended
due to a noncompliance report via detection or disclosure. The inspection process restarts upon
compliance restoration. The independent and identically distributed durations of compliance and
noncompliance episodes are denoted by U and D, respectively.

the penalty amount, subsequently announcing them to the �rm. The regulator does not update these

decisions once they are announced. In response, the �rm devises a decision rule which speci�es how

much information should be disclosed preemptively. Thus, we seek a subgame perfect equilibrium

of this two-stage game in which the regulator moves �rst as the Stackelberg leader. The inspection

and disclosure policies employed by the regulator and the �rm are detailed in §3.4. The regulator

makes decisions to maximize the long-run average social welfare, whereas the �rm makes decisions to

maximize his long-run average pro�t.

3.2 Compliance State Transitions

If the �rm is in compliance during production or if production is suspended following a report of

noncompliance, no pollutant is emitted to the environment. (While zero emission is a simplifying

assumption, relaxing it does not signi�cantly impact the results.) On the other hand, if the �rm is in

noncompliance but production continues (�noncompliant production�), the pollutant is emitted at a

constant rate.

The compliance and noncompliance states alternate as a two-state continuous-time Markov chain

with the rates � and �, respectively. Hence, the �rm stays in the compliance state for an exponentially

distributed amount of time with mean 1=� and in the noncompliance state for an exponentially distrib-

uted amount of time with mean 1=�. The rate � is interpreted as the capacity to restore compliance

which the �rm has installed before production starts. We assume that �� �, i.e., noncompliance is a
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rare occurrence. Initially at time zero, the �rm is in compliance. The probability that the �rm starts

in the compliance state at time zero and ends in the noncompliance state at time t is (Nakagawa 2005,

p. 221)

�(t) � �

�+ �
(1� e�(�+�)t): (1)

We assume that the transition rates � and � are exogenously given and una¤ected by managerial

interventions.

3.3 Production and Economics

In order to highlight the dynamics arising from stochastic compliance state transitions and the in-

spection/disclosure policies that depend on them, in our model we keep the representation of the

production process to a minimum. It is assumed that the demands for the �rm�s good are deter-

ministic and that they arrive at a constant rate, normalized to one. Each unit of demand triggers a

production order (i.e., make-to-order production). Hence, production runs at a constant rate equal

to one unless it is suspended due to a report of noncompliance. Production and delivery lead times

are negligible and there is no �xed setup cost. We assume that all unmet demands due to suspended

production are lost and that no inventory is held by the �rm.

The �rm earns revenue r for each unit sold. To focus on the relationship between the �rm and

the regulator, we do not explicitly model the consumer purchasing behavior and assume that they

make zero surplus for the units they acquire. Production cost is normalized to zero. If the �rm

continues production while not being in compliance, pollutant is emitted at a constant rate and causes

environmental damage valued at h per unit time. Damage is avoided if production is suspended

following a report of noncompliance. The value h re�ects both immediate and long-term impacts on

the environment, and we assume that it is higher than the opportunity cost of lost sales, i.e., h > r.

This assumption implies that, from the society�s standpoint, pollution prevention takes precedence

over revenue generation.

The regulator incurs a �xed cost � each time she performs an inspection. We assume that the cost

of performing an inspection is su¢ ciently small so that the condition � < (h�r)�=�2 is satis�ed.4 This

condition ensures that the regulator has an incentive to perform inspections; if it is violated, the �rm

may �nd inspections too costly to justify the potential social bene�t. The �rm is liable to the penalty

�, which is levied by the regulator if it is discovered that the damage to the environment has already

been done. Therefore, the �rm pays the penalty if the regulator�s inspection detects noncompliance or

if the �rm is found to have been in noncompliance at the time of his disclosure. By contrast, the �rm

is exempt from the penalty if he discloses noncompliance as soon as it occurs, because the immediate
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suspension of production followed by such an action leaves no environmental damage.

We assume that there is an upper bound on � whose value is exogenously given. This rules out

an unrealistic scenario where the regulator imposes an arbitrarily large penalty on the �rm. A similar

assumption is commonly found in the literature (e.g., Kaplow and Shavell 1994, Innes 1999) and is

often justi�ed on the grounds that �nancial and legal restrictions such as the bankruptcy risk limit the

penalty size. For notational convenience we specify the upper bound as r�, where � is the normalized

maximum penalty.5 Henceforth the condition � � r� is referred to as maximum penalty constraint.

In addition, we make the following mild technical assumption to further rule out unlikely situations:

� < by=� where by > 0 is the unique solution to the equation y=2
y= ln(1+y)�1 =

�
� � 1. When combined

with the earlier assumption �� �, this condition is easily satis�ed by most reasonable values of �; in

practical scenarios the condition is e¤ectively equivalent to � <1.6

3.4 Inspection and Disclosure Policies

We assume that the regulator employs one of two inspection policies: periodic inspections and random

inspections. In both cases the regulator performs inspections every T time units� a variable we call

inspection interval� unless an inspection is suspended due to a noncompliance report, in which case

the inspection process restarts upon compliance restoration. Under the random inspection policy T is a

random variable with mean � , i.e., E [T ] = � . Under the periodic inspection policy, on the other hand,

T = � since T is deterministic. The regulator sets � in both cases, thus determining the inspection

frequency � � 1=� . (Note that, despite the constant value T = � under the periodic inspection policy,

in general the realized intervals are not uniformly spaced because an inspection may be suspended

for a random amount of time following a report of noncompliance. See Figure 1 for illustrations.)

We assume that T under the random inspection policy is exponentially distributed. This assumption

is made in order to maximize the contrast between random and periodic inspections. Because of

memorylessness, the �rm facing random inspections with exponential intervals has identical outlook

of the future at each point in time; the �surprise factor�of random inspections is maximal under this

policy, since the timing of the past inspection is irrelevant in predicting when the next inspection will

take place. This is in sharp contrast to the case of periodic inspections, since under this policy the

past inspection informs the �rm with perfect knowledge about the timing of the next inspection; in

this case, the surprise factor is zero.

The �rm is said to practice nondisclosure if he never discloses noncompliance. Similarly, full

disclosure means that the �rm discloses all occurrences of noncompliance, while partial disclosure

means only selected ones are disclosed. The values of enforcement and economic parameters determine

which practice is adopted by the �rm. The simplest choice is between full disclosure and nondisclosure:
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either disclose all or nothing. Such a binary decision makes sense in some situations, but in general

admitting partial disclosure improves the �rm�s performance.

If the �rm were to adopt partial disclosure, an important factor in deciding whether to disclose a

particular occurrence of noncompliance is when it occurs. This is because there is a high chance that

the �rm will escape detection if the next inspection is to arrive far into the future. In such a case

he is willing to take a chance and not disclose noncompliance, since it is likely that compliance will

be restored before the next inspection. By contrast, such willingness is lower if noncompliance occurs

shortly before the next inspection; in this case the �rm may be better o¤ disclosing it preemptively

to avoid being detected and penalized. This reasoning suggests that the natural disclosure policy in

the presence of such a �horizon e¤ect�is of the threshold kind. We formally state the two disclosure

policies described so far.

De�nition 1 Under the binary disclosure policy, the �rm either discloses every occurrence of non-

compliance at its onset or does not disclose any. Under the threshold disclosure policy, the �rm

discloses an occurrence of noncompliance at its onset if and only if the time remaining until the ex-

pected arrival of the next inspection is smaller than or equal to s 2 [0; � ].

We call the time interval of length s in the de�nition disclosure window. By de�nition this window

never exceeds the expected inspection interval; hence it satis�es 0 � s � � . Under the threshold

disclosure policy the �rm discloses only the noncompliance episodes that start within the disclosure

window, situated in the later portion of the inspection interval. Hence, the larger the window, the more

noncompliance episodes disclosed. Note that the threshold disclosure policy includes nondisclosure and

full disclosure as special cases, each corresponding to s = 0 and s = � , respectively. We assume that

the �rm employs either the binary or threshold disclosure policy, choosing between the two depending

on whether he is subject to periodic or random inspections. (As we show later, the threshold disclosure

policy does not always present an advantage over the binary disclosure policy.)

An important part of De�nition 1 is that the �rm is assumed to disclose noncompliance immedi-

ately after it occurs. This is intuitive because the �rm may avoid the penalty with certainty by not

postponing disclosure. To streamline exposition we prescribe the immediate disclosure as part of the

de�nitions of disclosure policies, noting that it is in fact optimal under both random and periodic

inspections (proof is found in the accompanying Technical Appendix).

3.5 Decisions and Objectives

Before time zero, given the announced penalty � � 0 and the inspection frequency � > 0 (or equiva-

lently the mean inspection interval � > 0), the �rm sets the disclosure policy by choosing between the
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threshold policy and the binary policy. Under the threshold policy, the �rm sets the disclosure window

size s. Under the binary policy, the �rm chooses either nondisclosure or full disclosure. The �rm�s

objective is to maximize his long-run average pro�t. Anticipating this response, the regulator chooses

the values of � and � that maximize the long-run average social welfare subject to the maximum

penalty constraint � � r�.7

Let I, R, and B denote the long-run averages of the following performance measures, in the

presented order: the number of inspections performed, the cumulative duration of suspended noncom-

pliance, and the cumulative duration of unsuspended noncompliance. Under the assumptions outlined

above, the long-run average social welfare is then equal to r(1�R)��I �hB: the �rm earns the rev-

enue r per unit time unless production is suspended, which lasts R per unit time in the long-run; the

regulator incurs the �xed cost � each time she performs an inspection, doing so I times per unit time

in the long-run; the damage valued at h is done to the environment while noncompliant production

lasts B per unit time in the long-run. Note that the penalty � does not appear in the social welfare

function because it is the amount of a transfer between the �rm and the regulator that cancels out

within the social boundaries.

From the expression above it is clear that maximizing the long-run average social welfare is equiv-

alent to minimizing the long-run average social cost C � �I + rR + hB, the convention we adopt in

the remainder of the paper. Similarly, the �rm�s pro�t-maximization problem is formulated as the

equivalent cost-minimization problem, 	 denoting his long-run average cost. The expressions for C

and 	 are evaluated in the next section, where we characterize the equilibria under the periodic and

random inspection policies.

4 Equilibria Under Periodic and Random Inspections

In this section we characterize the equilibria that emerge under the periodic and random inspection

policies. In each case we evaluate the long-run average performance measures I, R, B, and 	 that

de�ne the objective functions, derive the �rm�s optimal response to the regulator�s announcement of

the penalty amount and the inspection frequency, and solve the regulator�s social cost minimization

problem. The comparisons of equilibria are presented in §5.

4.1 Periodic Inspections

Recall that the inspection interval T under periodic inspections is deterministic and equal to the

constant � . Before characterizing the equilibrium, we �rst develop the expressions for performance

measures when the �rm employs the threshold disclosure policy in response to periodic inspections.
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4.1.1 Performance Measures Under Threshold Disclosure Policy

The most convenient unit of analysis in evaluating the performance measures under periodic inspections

is an inspection cycle. An inspection cycle is the time interval that contains at most one inspection

performed, beginning in the compliance state and concluding with three possible endings that leave

the �rm back in the compliance state: (i) the cycle ends � time units after the start when the regulator

arrives for an inspection and �nds the �rm in compliance; (ii) the cycle ends when compliance is

restored following the regulator�s detection of noncompliance at � time units since the start; (iii)

the cycle ends when compliance is restored following the �rm�s disclosure of noncompliance. Note

that these are the only possible endings of an inspection cycle. Because of memorylessness of the

exponential compliance and noncompliance durations, the start and end times of an inspection cycle

mark regeneration epochs. Therefore, an inspection cycle forms a renewal (Heyman and Sobel 1982,

p. 184; Tijms 2003, p. 40). Note also that an inspection cycle may end at, before, or after � time

units since the start, because it takes a random amount of time for compliance to be restored after

detection or disclosure. Thus the length of an inspection cycle� denoted by X� is random, and it is

to be distinguished from the constant inspection interval T = � .

Depending on whether the �rm is in compliance at the beginning of the disclosure window (at time

� � s since the cycle start), under the threshold disclosure policy the three outcomes above are further

divided into �ve cases, referred to as Case 1a, Case 1b, etc. See Figure 2 that illustrates these cases.

1. The �rm is in compliance at time ��s since the cycle start. Moreover: (a) compliance lasts until

or after time � , at which the current inspection cycle ends with an inspection (but no detection); (b)

noncompliance starts before time � and at that moment the �rm discloses the state, and subsequently

the current inspection cycle ends when compliance is restored.

2. The �rm is in noncompliance at time � � s since the cycle start. Moreover: (a) noncompliance

lasts until or after time � , at which the regulator�s inspection detects noncompliance and subsequently

the current inspection cycle ends when compliance is restored; (b) compliance is restored before time �

and it lasts until or after time � , at which the current inspection cycle ends with an inspection (but no

detection); (c) compliance is restored before time � but it is followed by a transition to noncompliance

before time � which is disclosed by the �rm, and subsequently the current inspection cycle ends when

compliance is restored again.

Note that in all cases at most one new noncompliance episode occurs within the disclosure window

because, under the threshold disclosure policy, the �rm always discloses the �rst of such occurrences

(see Cases 1b and 2c in Figure 2) and subsequently the current inspection cycle ends as soon as

compliance is restored. As a result, the �ve cases described above form a complete list of categories
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τ0 τ – s

Production
Case 1a

τ0 τ – s

ProductionCase 1b

τ0 τ – s

Case 2a Production

τ0 τ – s

ProductionCase 2b

: Detection

: Noncompliance : Disclosure

: Cycle start/end
τ0 τ – s

ProductionCase 2c

Figure 2: Five possible inspection/detection/disclosure outcomes that may arise in an inspection cycle
under the threshold disclosure policy combined with periodic inspections. Noncompliance episodes
are denoted by thick horizontal lines. Note that any realization of state transitions is possible before
time � � s, provided that the state starts with compliance at time 0 and ends with either compliance
(Cases 1a and 1b) or noncompliance (Cases 2a, 2b, and 2c) at time � � s. (For brevity, only one
noncompliance episode appears in the �gures.)

for all possible inspection/detection/disclosure outcomes that may arise in an inspection cycle. In

addition, as illustrated in Figure 2, production lasts either until the �rm discloses noncompliance or

for exactly � time units in case no disclosure is made.

With the complete list of stochastic outcome categories speci�ed, we are now in a position to

evaluate the long-run average performance measures. As an intermediate step, we �rst compute the

probabilities of each case listed in Figure 2 and then evaluate the following quantities: (i) E [X], the

expected length of an inspection cycle; (ii) E [I], the expected number of inspections performed in an

inspection cycle; (iii) E [R], the expected duration of suspended noncompliance in an inspection cycle;

(iv) E [B], the expected cumulative duration of unsuspended noncompliance in an inspection cycle;

(v) E [	], the �rm�s expected cost in an inspection cycle. The results are summarized as follows.

Lemma 1 (i) E [X] = � � s+
�
1
� +

1
�

�
(1� e��s) +

�
1
� �

�+�
�(���)(e

��s � e��s)
�
� (� � s); (ii) E [I] =

e��s+ �
���(e

��s�e��s)� (� � s); (iii) E [R] = 1�e��s
� + �e��s��e��s

�(���) � (� � s); (iv) E [B] = �
�+� (� � s)+�

1�e��s
� � 1

�+�

�
� (� � s); (v) E [	] = r 1�e��s� +

�
r�e

��s��e��s
�(���) + �e��s

�
� (� � s).

All proofs are found in the Appendix. Note that the function �(t) appearing in the lemma is given

by (1). Since each inspection cycle forms a renewal, we apply the renewal-reward theorem (Tijms

2003, p. 41) to compute the long-run averages by forming a ratio between each performance measure

in (ii)-(v) of the lemma and E [X] in (i). For instance, the long-run average number of inspections
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performed is evaluated as I = E [I] =E [X]. The remaining measures R, B, and 	 are similarly de�ned.

It is clear from Lemma 1 that these ratios yield complex expressions that are not amenable to

tractable analyses. To overcome this di¢ culty, we utilize the assumption introduced in §3.2 that

noncompliance occurs rarely, i.e., � � �. Expanding I, R, B, and 	 with respect to the ratio �=�

and retaining up to the �rst-order terms yield the following:

Corollary 1 (Approximate measures under periodic inspections) (i) I = 1
�

�
1� �

�

�
s
� +

e��s�e���
��

��
�

�
�
s
� �

s2

2�2

�
; (ii) R = �

�

�
s
� +

e��s�e���
��

�
; (iii) B = �

�

�
1� s

� �
e��s�e���

��

�
; (iv) 	 = �

�

�
r s� + (r + ��)

e��s�e���
��

�
.

These approximations simplify the expressions substantially, enabling tractability. We use them

as the basis of our analysis in the remainder of the paper. Finally, the long-run average social cost C

is evaluated using the performance measures above via the relation C = �I + rR+ hB (see §3.5):

C =
h�

�
+
�

�
� ��

�
s

�
� s2

2�2

�
� �
�

��
�
+ h� r

�� s
�
+
e��s � e���

��

�
: (2)

4.1.2 Equilibrium

Recognizing that nondisclosure and full disclosure are obtained by setting s = 0 and s = � , we see

that the objective functions under the binary disclosure policy follow directly from the expressions

derived above. With the objective functions for both disclosure policies speci�ed, we now characterize

the equilibrium arising under periodic inspections. As a �rst step of the backward induction, we start

with the �rm�s optimal response to the announced values of � � 0 and � > 0.

Lemma 2 Under periodic inspections with � � 0 and � > 0, the �rm chooses the threshold disclosure

policy with s� = min
n
1
� ln

�
1 + ��

r

�
; �
o
.

As expected, the �rm prefers the threshold disclosure policy to the binary disclosure policy because

the former presents �exibility that the latter lacks (continuous decision variable s vs. binary decision).

Notice from the lemma that nondisclosure (s� = 0) occurs if and only if � = 0. That is, the �rm

keeps silence if no penalty is charged for noncompliance detection, but even a small amount of penalty

prompts the �rm to adopt partial disclosure (s� > 0).

Next, we turn to the regulator�s problem. Anticipating the �rm�s choice speci�ed above, the

regulator who employs periodic inspections determines � and � that minimize the long-run average

social cost subject to the maximum penalty constraint. Let I
�
, R

�
, B

�
, and 	

�
be the performance

measures in Corollary 1 evaluated at s�. Then the regulator�s problem is to minimize C
� � �I

�
+
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rR
�
+ hB

�
subject to � � r�. For notational convenience, let

� � 1

�
ln (1 + ��) : (3)

The equilibrium decisions, denoted by the superscript p, are as follows.

Proposition 1 (Equilibrium under periodic inspections) Let G(� j�) �
�
1 + h�r

� �
�
(1� e��� )��

2 + h�r
� �

��
1� �

� �
e����e���

��

�
+ ��

�
1� �

�

�
. In equilibrium, the regulator employing the periodic

inspection policy chooses �p = r� and �p = max f�;b�(�)g, where b�(�) > 0 is the unique solution to

the equation G(� j�) = �
� � 1. In response, the �rm chooses sp = �.

A number of important observations are made from this proposition. First, the maximum penalty

constraint binds in equilibrium, i.e., the regulator sets the penalty � to the maximum allowed amount

r�. This agrees with the results found in the majority of papers in the law enforcement literature

including Becker (1968) and Kaplow and Shavell (1994), and it is in part driven by the assumption

that the regulator may levy the penalty without incurring any cost of her own. Second, in equilibrium

the �rm�s choice of the disclosure window size sp is independent of the inspection interval �p, despite

the fact that in general the �rm�s optimal response s� is a function of both � and � (see Lemma 2).

This happens because, once the regulator uses the penalty as a lever for inducing the �rm to choose

a desired size of the disclosure window, she adjusts the inspection interval to ensure that it is never

exceeded by the window size (i.e., s � � should be maintained); otherwise inspections are performed

too frequently, not taking full advantage of the �rm�s disclosure. We discuss other implications of

Proposition 1 in §5, where we compare the equilibria under periodic and random inspections.

4.2 Random Inspections

As described in §3.4, under the random inspection policy the regulator sets the inspection frequency

� = 1=� but randomizes the actual inspection times by sampling from the exponential distribution to

determine the inspection interval T . As the next lemma shows, the �rm responds to the regulator�s

announcement of the penalty and inspection frequency in a much simpler manner than he does under

periodic inspections.

Lemma 3 Under random inspections with � � 0 and � > 0, the �rm chooses the binary disclosure

policy under which he does not disclose noncompliance if � < r� while he fully discloses noncompliance

if � � r� . The performance measures in each case are: (i) I
�
= �

�+�

�
1
� +

�
��+1

�
, R

�
= �

�+�
1

��+1 ,

B
�
= �

�+�
��
��+1 , and 	

�
= �

�+�
r+��
��+1 if � < r� ; (ii) I

�
= �

�+�
1
� , R

�
= �

�+� , B
�
= 0, and 	

�
= r�

�+� if

� � r� .
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In contrast to the periodic inspections case, the threshold disclosure policy does not o¤er an

advantage over the binary disclosure policy to the �rm. In fact, the optimal threshold policy under

random inspections degenerates into the optimal binary policy. Such a simple decision structure

is enabled by memorylessness of the inspection interval T . Because of memorylessness, the �rm�s

expectation about the timing of the next inspection does not change over time. Then, due to this time

symmetry, the decision on whether or not an instance of noncompliance should be disclosed applies

uniformly to all occurrences of noncompliance: either all are disclosed or none is. As a result, partial

disclosure never arises under random inspections.

Recall from §4.1 that we used approximate performance measures to derive the equilibrium solution

under periodic inspections. To maintain consistency, we similarly approximate the measures in Lemma

3 and use them as the basis of our analysis:

Corollary 2 (Approximate measures under random inspections) If � < r� , then: (i) I
�
=

1
�

�
1� �

�
1

��+1

�
; (ii) R

�
= �

�
1

��+1 ; (iii) B
�
= �

�
��
��+1 ; (iv) 	

�
= �

�
r+��
��+1 . If � � r� , then: (i) I

�
=

1
�

�
1� �

�

�
; (ii) R

�
= �

� ; (iii) B
�
= 0; (iv) 	

�
= r�

� .

Using these expressions, we can write the long-run average social cost C
�
= �I

�
+ rR

�
+ hB

�
as

C
�
=

8<:
r�
� +

�
�

�
1� �

�

�
if � � �

r ;

h�
� +

�
� �

�
�

��
� + h� r

�
1

��+1 if � > �
r :

(4)

The regulator chooses � and � that together minimize this function subject to the maximum penalty

constraint � � r�. The equilibrium decisions, denoted by the superscript r, are as follows.

Proposition 2 (Equilibrium under random inspections) Let � y �
�
2

r�
h�r
� � �

�
��
��� +

��
��� � �

��1
and � z �

�r�
h�r
� � �

�
��
��� � �

��1
. In equilibrium, the regulator employing the random inspection

policy chooses �r 2 [0; r�] and � r = � z if � < � y while she chooses �r = r� and � r = � if � � � y. In

response, the �rm chooses nondisclosure if � < � y while he chooses full disclosure if � � � y.

Note that the quantities � y and � z de�ned in the proposition satisfy 0 < � y < � z under the

assumptions � < (h� r)�=�2 and �� � introduced in §3. The proposition con�rms the dichotomous

structure of the equilibrium under random inspections which follows directly from the �rm�s binary

response. In addition, it reveals a major di¤erence between the equilibria under periodic and random

inspections: under the latter, the maximum penalty constraint does not necessarily bind. For small

values of �, the regulator may choose any penalty amount � without changing the equilibrium as

long as it satis�es the constraint � � r�. This degenerate solution arises if the regulator �nds full

16



disclosure ine¢ cient. That is, if a large penalty cannot be imposed (small �), even at the maximum

allowed penalty the regulator may be unable to �nd a cost-e¤ective inspection frequency that induces

full disclosure. Facing such a situation, the regulator will instead choose the inspection frequency

that minimizes the social cost without inducing full disclosure. When this equilibrium is established,

however, an incremental increase in penalty does not change the �rm�s nondisclosure response nor the

social cost. The regulator�s indi¤erence toward penalty for the case � < � y re�ects this situation.

Combining (4) with the results in Proposition 2, we can obtain a closed-form expression for the

optimal long-run average social cost:

C
r
=

8><>:
r�
� � �(�� 2�) + 2�

r�
h�r
� � �

��
1� �

�

�
� if � < � y;

r�
� +

�
�

�
1� �

�

�
if � � � y:

(5)

5 Comparison of Equilibria

In this section we compare the equilibria under periodic and random inspections that we derived in

the last section. In §5.1 we focus on the relationship between the two enforcement levers under each

inspection policy, and in §5.2 we compare the social costs under the two policies. In the discussions

below we pay special attention to how the equilibria are impacted by the maximum penalty constraint,

represented by the parameter �, which plays a key role in determining the e¤ectiveness of an inspection

policy.

5.1 Relationship between Penalty and Inspection Frequency

We �rst examine the relationship between the two enforcement levers, penalty and inspection fre-

quency, when their values are determined in equilibrium. As found in Proposition 1 and Proposition

2, under both periodic and random inspections the penalties �p and �r are set to the maximum

amount (r�) except when � is su¢ ciently small under random inspections (see §4.2). That the max-

imum penalty limit is reached re�ects the fact that the penalty is a more e¢ cient instrument than

inspections; unlike the latter, the regulator does not incur any direct cost by using the penalty as an

incentive. It also implies that relaxing the binding maximum penalty constraint (larger �) leads to a

new equilibrium in which the penalty is increased accordingly. Thus, �p and �r increase as � becomes

larger.

By contrast, the behaviors of �p and � r� or equivalently the inspection frequencies� are not

straightforward, as the next proposition reveals. (Note that b�(�) and � y appearing in the propo-
sition are de�ned in Proposition 1 and Proposition 2.)
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Figure 3: The �gure on the left shows the equilibrium mean inspection intervals �p (solid line) and � r

(dashed line) as a function of the normalized maximum penalty �. The �gure on the right shows three
components of the equilibrium long-run average social cost under periodic inspections. The following
parameter values are used in this example: � = 0:02, h = 5, r = 1, � = 1, and � = 10.

Proposition 3 As � increases from zero to in�nity, �p initially decreases but increases after reaching

a point at which � = b�(�). On the other hand, � r initially stays constant until it jumps downward at
� = � y, after which it increases. Both �p and � r increase if and only if the �rm chooses full disclosure.

For su¢ ciently large �, both �p and � r increase in �. That is, the regulator performs less frequent

inspections if she is able to charge higher penalty for a violation. This relationship is intuitive since

higher penalty lessens the need to perform costly inspections� this is exactly the substitutability known

in the literature. However, the proposition states that substitutability does not hold when � is small.

For small �, the opposite may happen: under periodic inspections, the two enforcement levers in fact

act as complements, i.e., higher penalty should be accompanied by more frequent inspections rather

than lessen the need for inspections. See Figure 3(a) for an illustration of this non-monotonic behavior.

As a direct consequence, the long-run average cost of inspections (�I) also exhibits non-monotonicity;

see Figure 3(b) that illustrates this for periodic inspections. From this �nding, we conclude that the

nature of the interaction between the two levers may fundamentally change depending on how much

penalty can be levied.

Substitutability may be reversed under periodic inspections because transparency of the inspection

schedule allows the �rm to �ne-tune his disclosure timing. If � is small, such an opportunistic behavior

may result in a partial disclosure equilibrium in which the �rm does not disclose early occurrences of

noncompliance. Consider the chain of events that unfolds after the penalty is increased incrementally,

starting from a partial equilibrium. In order to avoid the increased penalty, the �rm responds to this

change by disclosing more early noncompliance occurrences (i.e., choose a larger disclosure window),

thereby preempting inspections. This leads to fewer inspections, which bene�t the regulator in the
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form of reduced cost of inspections. However, she does not simply absorb this saving. The regulator

reinvests the saving in performing more inspections, because she can induce even more disclosure by

doing so as long as full disclosure has not been reached. Hence, a reinforcement mechanism is in e¤ect:

unless the �rm fully discloses noncompliance, an increased penalty leads to a new equilibrium in which

the regulator schedules more frequent inspections.

The reversal of substitutability exists under random inspections as well, even though partial dis-

closure equilibrium does not arise. This is evident from Figure 3(a), which shows that � r jumps to a

lower number, i.e., the equilibrium inspection frequency under random inspections jumps to a higher

number, as the �rm switches from nondisclosure to full disclosure in response to the increased penalty.

This is an extreme version of complementarity, pushed to the limit by the �rm�s binary disclosure

decision. Thus the non-monotonic relationship between the two enforcement levers is quite general.

We therefore conclude that the substitutability between penalty and inspection intensity� the

accepted notion in the probabilistic law enforcement literature� is in fact a quali�ed truth. If full

disclosure cannot be induced because of the limited amount of penalty that can be charged to the

�rm, substitutability is replaced by complementarity.

5.2 Relative Social Costs and Choice of Inspection Policy

Next, we compare the equilibrium long-run average social costs under periodic and random inspections,

denoted by C
p
and C

r
. This comparison o¤ers a useful guidance to the regulator who faces a choice

between the two inspection policies. As before, we pay special attention to the maximum penalty

constraint. To this end, we examine how the social costs vary with � under the two inspection policies.

The following proposition focuses on the limiting cases.

Proposition 4 Cp < Cr for su¢ ciently small �, whereas Cp > Cr for su¢ ciently large �.

In other words, random inspections are preferred if and only if the regulator can charge a large

penalty to the �rm (large �); otherwise, periodic inspections are preferred. The numerical example

presented in Figure 4(a) con�rms this �nding. As the �gure shows, the advantage of random inspections

disappears as � approaches zero, the limit at which a lower social cost is attained under periodic

inspections than under random inspections.

Intuition suggests that performing random inspections is more e¤ective than performing periodic

inspections. Consider periodic inspections. Under this policy the �rm perfectly anticipates when the

next inspection arrives, and therefore he is able to �ne-tune his disclosure timing so that he discloses

only the noncompliance episodes that occur close to the next inspection arrival. Such an opportunistic

behavior is mitigated under the random inspection policy, since there is no certainty about the timing
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Figure 4: The �gure on the left shows the equilibrium long-run average social costs C
p
(solid line) and

C
r
(dashed line) as a function of the normalized maximum penalty �. The �gure on the right shows

the regions in the (�; �) space in which one of the two inspection policies is preferred from the social
cost perspective. The same parameter values as in Figure 3 are chosen, except that � in the second
�gure is varied between 0 and 0.04.

of inspections; the �surprise factor� inherent in the random inspection policy would lower the �rm�s

ability to plan ahead. According to this reasoning, then, the random inspection policy should dominate

the periodic inspection policy. This is indeed what happens when � is large, but Proposition 4 reveals

that the opposite is true when � is small: the random inspection policy is dominated by the periodic

inspection policy. What drives this reversal?

As it turns out, ceteris paribus, it is more e¢ cient to perform periodic inspections than to perform

random inspections when the compliance/noncompliance states alternate as a Markov process. The

next lemma supports this assertion.

Lemma 4 With �xed inspection frequency, the long-run average social cost is lower under periodic

inspections than under random inspections if the �rm is induced to choose either nondisclosure or full

disclosure under both inspection policies.

Note that the lemma is proved using the exact performance measures; the result is general and does

not depend on the approximations. The assumptions in Lemma 4 are chosen to isolate the impact of

randomization, the key di¤erence between the two inspection policies. As a result, unlike in Proposition

4, we do not compare the equilibrium outcomes that are in�uenced by other confounding factors

such as the binding maximum penalty constraint. Instead, we control for these factors as follows.

First, we normalize the �rm�s disclosure behavior by considering only the cases in which the �rm

either fully discloses noncompliance or never does under both inspection policies. (Partial disclosure

is not considered because such an outcome does not arise under random inspections.) Second, we
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�x the inspection frequency, which allows us to focus on the e¤ect of randomizing the inspection

interval around its mean. With these factors controlled for, the lemma states that performing periodic

inspections is more e¢ cient than performing random inspections.

To understand the reason for this result, consider the case where the �rm never discloses non-

compliance. Then noncompliance can only be discovered via detection, and therefore the e¢ ciency of

an inspection policy is determined entirely by the detection probability. This is precisely �(t) given

in (1), namely, the probability that an inspection at time t �nds noncompliance after compliance is

observed at time zero. Under the periodic inspection policy, inspections are performed every constant

time units equal to � ; hence, the detection probability is �(�). On the other hand, under the random

inspection policy, inspections are performed every T random time units, which has mean E [T ] = � ;

hence the detection probability is E [�(T )] in this case. Notice from (1) that �(t) is concave increasing.

Then by Jensen�s inequality we have �(�) > E [�(T )], i.e., the probability of detection is greater under

periodic inspections than under random inspections. This implies that periodic inspections are more

e¢ cient than random inspections at detecting noncompliance, thus lowering the overall cost.

Therefore, higher e¢ ciency is achieved with periodic inspections because the detection probability

exhibits diminishing returns in time. This concavity arises from the transient behavior of the un-

derlying Markov process, which restarts each time an inspection arrives and �nds compliance (due

to memorylessness of the compliance duration). Once compliance is observed, it takes time for the

ensuing state transitions to gradually settle into the steady state. Then, as the regulator delays the

time of next inspection, the probability of �nding noncompliance at that time increases but with de-

creasing rates because the probability converges to the steady-state limit limt!1 �(t) = �=(� + �).

This convergence gives rise to concavity, which is signi�cant as long as inspections are performed at

�nite intervals.8

The e¤ect of concavity is as follows. Consider a regulator who �ips a coin to decide whether

she should inspect the �rm earlier or later than the scheduled inspection time. An early detection

presents an advantage of preventing more pollutions, but because the detection probability increases in

time, the chance of detection is higher if the inspection is delayed. Although randomization balances

this tradeo¤ between early and late inspections, it also brings e¢ ciency loss; due to the concavity

in detection probability, randomization assigns more weight to an early non-detection than to a late

detection. As a result, on average it leads to a lower probability of detection.

Returning to the result of Proposition 4, we now see that the conditional statement there� that

random inspections are preferred if and only if � is large� originates from the tension between e¢ ciency

of noncompliance detection and the �rm�s opportunistic disclosure behavior. Relative to random
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inspections, performing periodic inspections brings higher e¢ ciency of detection but at the same time

allows the �rm to �ne-tune his disclosure timing, thus softening the impact of an increased penalty.

When � is small, the former bene�t dominates the latter disadvantage because the impact of the �rm�s

muted response to the penalty is limited by the small amount charged while the relative contribution of

inspections is increased. When � is large, by contrast, the opposite happens because the �rm�s muted

response is ampli�ed by the large penalty while the relative contribution of inspections is reduced.

Because of this tradeo¤, a regulator who considers implementing a cost-e¤ective inspection policy

would have to make a choice. One key determinant of such a choice is the (normalized) maximum

penalty �, which has been our focus so far. Another is �, the cost incurred in each inspection. Both are

important economic factors that directly in�uence the e¤ectiveness of an inspection policy. In Figure

4(b) we identify the regions in the (�; �) space in which either the periodic inspection policy or the

random inspection policy is preferred in terms of minimizing the social cost. As the �gure illustrates,

periodic inspections are preferred if the amount of penalty that can be charged to the �rm is limited

and it is expensive to perform an inspection. Otherwise, random inspections are preferred. Therefore,

periodic inspections are recommended to a regulator who operates in restrictive conditions (small �

and large �). In the next section we discuss the implications of this �nding.

6 Conclusions

In this paper we o¤er new perspectives on the problem of environmental regulation enforcements.

Building on the ideas and tools from the mathematical theory of reliability, we develop a novel analyt-

ical framework that brings precision to the problem features that have been abstracted in the existing

literature. In particular, we add a time dimension to the decisions made by a manufacturing �rm

and a regulator in a production setting, representing stochastic pollutant emissions as an alternating

Markov process. We study the situations in which environmental violations occur unintentionally. We

assume that the �rm follows a decision rule on when such random occurrences should be disclosed,

knowing that he will be charged a penalty if noncompliance is discovered in an inspection. In turn, the

regulator chooses the amount of penalty and the frequency of inspections that minimize the long-run

average social cost. The regulator employs either periodic inspections performed at regular intervals or

random inspections, under which the inspection interval is sampled from an exponential distribution.

We �nd that, contrary to a commonly held belief, the two enforcement levers� inspection intensity

and penalty� do not necessarily act as substitutes in in�uencing the �rm�s decision. While it is intuitive

that a higher penalty alleviates the need for frequent inspections, such a relationship is valid only when

the �rm is induced to fully disclose noncompliance. Full disclosure may not happen, though. If the

maximum amount of penalty that can be charged to the �rm is limited, the �rm either never discloses
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noncompliance (under random inspections) or discloses only the late occurrences of noncompliance

(under periodic inspections), taking a chance that the early occurrences will be resolved before the

next scheduled inspection. With such an opportunistic behavior, substitutability may be reversed: the

two enforcement levers act as complements. This means that the regulator minimizes the social cost

by combining frequent inspections with a larger penalty, thus o¤ering a stick-and-stick rather than a

carrot-and-stick incentive to the �rm. It also implies that the regulator�s enforcement cost may rise

despite the threat of increased penalty, the opposite of the known conclusion in the literature.

Furthermore, we �nd that periodic inspections may outperform random inspections even though

the latter possesses a �surprise factor�that the former lacks. This is not immediately clear, because

periodic inspections provide the �rm with perfect information about the inspection schedule, which

the �rm uses to act opportunistically with regard to his disclosure timing. Such a behavior lowers

the e¤ectiveness of periodic inspections, yet the net e¢ ciency may actually be higher than under ran-

dom inspections. As it turns out, periodic inspections are more e¢ cient at detecting noncompliance

when compliance/noncompliance states alternate stochastically. This happens because �nite inspec-

tion intervals capture the transient behavior of the state transitions, which introduces e¢ ciency loss

when inspections are randomized. Therefore, there exists a tradeo¤ between e¢ cient noncompliance

detection and exacerbating the �rm�s opportunistic disclosure behavior. Depending on which is more

signi�cant, either inspection policy may be preferred. We �nd that periodic inspections are preferred

when the regulator operates in restrictive conditions, marked by limited penalty and high cost of

inspections. If these conditions are not in place, random inspections are preferred.

Our �ndings suggest that the strategy for enforcing environmental regulations should be tailored to

the characteristics of a �rm. If a signi�cant portion of environmental violations occur unintentionally

due to accidents or other random causes such as equipment malfunctions, a one-size-�ts-all approach

is inadequate. Against large �rms with su¢ cient �nancial means and transparent operations (e.g.,

multinational manufacturers), the strategy of utilizing random inspections and imposing large �nes

in lieu of inspections would be e¤ective. However, according to our analysis, the same strategy would

not be as e¤ective against small �rms with limited �nancial resources and nontransparent operations

(e.g., local suppliers). For these �rms, the regulator should consider complementing penalties with

frequent inspections, performed at regular intervals. Recognizing this di¤erence is especially important

because in many cases the worst polluters are small-scale enterprises operating in less visible sectors.

As Lanjouw (2006, p. 54) notes, it is believed that �small �rms are more intensive producers of

pollution than large �rms� in large part because these �rms tend to use older equipment that are

more prone to breakdowns. Given the potentially large environmental impact originating these �rms,
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a well-executed enforcement strategy tailored to them may have a disproportionate e¤ect on overall

performance of environmental regulations.

Finally, the analytical framework developed in this paper has a potential as a diagnostic tool. For

example, the framework o¤ers a natural way to infer the amount of emissions that escape detection,

which can be readily computed by evaluating the performance measures derived in the model. Such

inferences are widespread in other areas (for example, Kaplan (2010) suggests a queuing model that

predicts the number of undetected terror plots), and our model paves the way for similar applications.

Notes
1In the literature the terms �audit�and �monitoring�are often used synonymously with �inspec-

tion,� despite the di¤erences in nuance. We adopt the same convention but primarily use the last

term.
2The stochastic process of alternating compliance/noncompliance states is best understood using

a machine repair analogy. Suppose that the �rm operates a pollution control system that removes

toxicity from the pollutant. Because of imperfect reliability the system goes down occasionally, emit-

ting untreated pollutant unless production is suspended. Noncompliance due to the failed system lasts

until system repair is completed. In this example the constant rates of state transitions correspond to

system failure rate and average speed of repair. This example operationalizes the suggestion by Malik

(1993) that equipment malfunction is one the major sources of stochastic emissions.
3The latter assumption is reasonable because disclosure will include information about the exact

scope and location of a violation, directing the regulator to where it has occurred and sparing her

e¤ort to �nd out the details.
4Together with the earlier assumption �� � this condition implies �� (h�r)=�, which states that

the inspection cost is negligible compared to the net cost incurred by the society while a noncompliance

episode goes unreported (the expected duration of which is equal to 1=�).
5If we take the view that the maximum penalty is determined by the �rm�s wealth, we may interpret

� and r� as days-cash-on-hand and cash reserve, respectively.
6For example, setting �=� = 10 in the given equation yields by = 6:57 � 107, implying that the

maximum penalty that can be levied should satisfy � = r� < rby=� = 0:1� by� (r=�), i.e., the penalty
should be smaller than 6.57 million times the revenue earned for the expected duration of compliance.

Increasing the ratio �=� further increases by and hence the allowed penalty amount.
7Social welfare maximization criterion is ubiquitous in the regulation context, and most of the

economics papers we reviewed in §2.2 assume the same objective. The objectives of maximizing or

minimizing a long-run average performance measure are common in many OM models, including those

for inventory controls such as the (Q; r) model (e.g., Zheng 1992). The games with static decision
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variables in in�nite horizon settings are also commonly found in the literature (e.g., Cachon and Zipkin

1999).
8Lemma 4 also shows that the periodic inspection policy continues to outperform the random

inspection policy even when the �rm fully discloses noncompliance. The reason is essentially the

same as the case of nondisclosure. While no detection occurs in this case, higher probability of

noncompliance detection is translated into a smaller expected number of inspections needed while

compliance is maintained. Therefore, the long-run average inspection cost is lower under periodic

inspections than under random inspections.

Appendix

A Proofs of Main Results

Proof of Lemma 1. See Appendix B.

Proof of Lemma 2. First, suppose that the �rm chooses the threshold disclosure policy. Recall

that the �rm�s choice s� is de�ned in the interval [0; � ]. Di¤erentiating 	(s) in Corollary 1, 	
0
(s) =

�
�� (r � (r + ��) e

��s) and 	
00
(s) = �

� (r + ��) e
��s > 0. Hence, 	(s) is convex. If � = 0 then

	
0
(0) = 0 and therefore 	(s) is minimized at s = 0. Suppose � > 0, in which case 	

0
(0) < 0. If

� � 1
� ln

�
1 + ��

r

�
then lims!� 	

0
(s) = �

�� (r � (r + ��) e
��� ) � 0 so	(s) is minimized at the boundary

s = � . Otherwise lims!� 	
0
(s) > 0 so 	(s) is minimized at a unique interior point s� < � whose

solution is found from the �rst-order condition 	
0
(s) = 0, which yields s = 1

� ln
�
1 + ��

r

�
. Combining

all cases, we have s� = min
n
1
� ln

�
1 + ��

r

�
; �
o
. Evaluating 	(s) at s�, we get the reduced long-run

average cost 	�(�), a continuous function de�ned as 	�(�) = r�
�2�

�
1 + ln

�
1 + ��

r

�
�
�
1 + ��

r

�
e���

�
for � < �� and 	�(�) = r�

� for � � �� where �� � r
�(e

�� � 1). Next, suppose that the �rm chooses

the binary disclosure policy. Substituting the nondisclosure and full disclosure conditions s = 0 and

s = � in the expression for 	 in Corollary 1 and comparing them, we �nd that the �rm chooses full

disclosure if and only if � > �b where �b � r
�

�
��

1�e��� � 1
�
. The corresponding reduced long-run

average cost is 	b(�), a continuous function de�ned as 	b(�) = �
� (r + ��)

1�e���
�� for � � �b and

	b(�) =
r�
� for � > �b. Now we compare 	b(�) with 	�(�). The following can be veri�ed: (i) �b < ��;

(ii) 	�(0) = 	b(0); (iii) 	b(�) increases until � = �b < �� and then stays constant at 	b(�) = r�
�

afterwards; (iv) 	�(�) increases until � = �� > �b and then stays constant at 	�(�) = r�
� afterwards;

(v) 	
0
b(�) > 	

0
�(�) for � 2 (0; �b]. Combined, these conditions imply 	b(�) � 	�(�) for all � � 0.

Hence, the threshold disclosure policy weakly dominates the binary disclosure policy; the �rm chooses

the former.

Proof of Proposition 1. For notational convenience let us suppress the argument � in G(� j�).
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It can be proved that the equilibrium exists in the region � � � satisfying � = r�, and that the

�rm sets s� = � in equilibrium. (Proof is found in the accompanying Technical Appendix.) It then

remains to �nd � � � that minimizes the regulator�s long-run average social cost (2) with s� = �

substituted. Let C
�
(�) be the reduced cost function with s� = �. First, we show that C

�
(�)

de�ned in the expanded region � > 0 has a unique interior minimizer. Di¤erentiating C
�
(�) and

setting it to zero yields the �rst-order condition G(�) = �
� � 1. Let us rewrite G(�) as G(�) =�

1 + h�r
� �

�
(1� e��� ) �

�
2 + h�r

� �
��
1� 1�e���

��

�
+
�
a� b

��

�
, where a � �� + h�r

�� (�� � 1 + e
���)

and b � (1� ��)2 + 1 � 2e���. It can be proved that a = b = 0 for � = 0 while a > 0 and

b > 0 for � > 0. Di¤erentiating G(�) yields G0(�) =
�
1 + h�r

� �
�
�e��� + 2

�

�
e��� � 1�e���

��

�
+ b

��2

and G00(�) =
�
h�r
�� (1� ��)�

2
�� � 1

�
�2e��� � 4

�2

�
e��� � 1�e���

��

�
� 2b

��3
. Moreover, the following

properties hold: (i) in the limit � ! 0, G(�), G0(�), and G00(�) approach 0, 0, and (h�r)�
� � �2

3 if

� = 0, while they approach �1, 1 and �1 if � > 0; (ii) in the limit � ! 1, G(�) and G0(�)

approach h�r
�� � 1 + a and 0. Since G(�) exhibits behaviors that are qualitatively di¤erent around

� = 0 depending on whether � = 0 or � > 0, we consider these two cases separately. Assume � = 0

and let G0(�) be G(�) with � = 0. The limits shown above imply that G0(�) initially increases from

zero at � = 0 if h�r�� > 1
3 , converging to

h�r
�� � 1 as � ! 1. Let �0 be the solution of G00(�) = 0,

i.e., �0 is a critical point of G0(�). Note that G00(�
0) = 0 can be written as '0(��

0) = h�r
�� (3� ��

0),

where '0(x) � 1
x3

�
2(ex � 1� x)� x2

�
(3�x). It can be proved that '0(x) < 1 for x > 0. (Proof is in

the Technical Appendix.) Then, evaluating G000(�) at �
0, we get G000(�

0) =
�
'(��0)� 1

�
�2e���

0
< 0.

That G000(�) < 0 at a critical point �
0 implies G0(�) is quasiconcave. Recall the assumptions

�
� � 1

and h�r
�� > �

� stated in §3 which together imply
h�r
�� � 1 > 1

3 . Combined with the earlier �nding that

G0(�) initially increases if h�r�� > 1
3 and that lim�!1G0(�) =

h�r
�� � 1 >

�
� � 1, quasiconcavity and

continuity of G0(�) imply that G0(�) crosses
�
� � 1 exactly once from below at �0 > 0. Therefore, the

optimal solution is unique when � = 0. Now assume � > 0. Consider two cases: b � 2 and 0 < b < 2.

If b � 2, it is straightforward to show that G0(�) > 0 for all � > 0. Therefore, in this case G(�)

monotonically increases from �1 to h�r
�� � 1 + a as � goes from zero to 1. Since a > 0 when � > 0

and h�r
�� > �

� , the limit
h�r
�� � 1 + a is greater than �

� � 1; hence, G(�) crosses
�
� � 1 exactly once

from below and therefore the solution is unique. Now assume b < 2. In this case G(�) may not be

monotonically increasing, i.e., it may peak before it converges to h�r
�� � 1 + a as � ! 1. Let �� be

the solution of G0(�) = 0, i.e., �� is a critical point of G(�). Note that G0(��) = 0 can be written

as '(���) = h�r
�� (3� ��

�), where '(x) � 1
x3

�
(2� b)ex � 2� 2x� x2

�
(3� x). (The function '0(x)

de�ned above is a special case of '(x) with b set to zero.) It can be proved that '(x) < 1 for x > 0.

Then the argument similar to the case of � = 0 leads to the conclusion that the solution is unique.
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In all three cases (� = 0, � > 0 with b � 2, � > 0 with 0 < b < 2), we found that the equation

G(�) = �
� � 1 has a unique solution for which G(�) <

�
� � 1 to its left and G(�) >

�
� � 1 to its right.

Since the solution depends on � we denote it as b�(�), which satis�es G0(b�(�)) > 0. Thus, C
�
(�)

de�ned in the expanded region � > 0 has a unique interior minimizer b�(�), the statement we set out
to prove. Restricting the region to that in which the equilibrium exists (� � �), we �nally conclude

that in equilibrium the regulator chooses �p = max f�;b�(�)g.
Proof of Lemma 3. Recall that the time between two successive and uninterrupted inspections

is T � exp(�) where � = 1
� . Suppose that the �rm employs the threshold disclosure policy. At the

moment noncompliance occurs, irrespective of when it occurs, the �rm facing random inspections

expects that the next inspection will arrive � time units later; due to memorylessness of T , the

expectation does not change. Then the �rm discloses this occurrence if and only if s = � ; if s < � ,

regardless of the value of s, the onset of noncompliance is always outside of the disclosure window

and therefore the �rm does not disclose it. Because the same logic applies to all occurrences of

noncompliance, it follows that the �rm discloses either all or none depending on whether s = �

or s < � . Hence, the threshold disclosure policy under random inspections degenerates into the

binary disclosure policy. Next, we derive the conditions under which nondisclosure (ND) or full

disclosure (FD) is optimal. The most convenient unit of analysis is a single compliance-noncompliance

cycle (�cycle�), which forms a renewal. Each cycle lasts U + D time units, where U � exp(�)

and D � exp(�). Without loss of generality, focus on a randomly selected cycle and set the cycle

start to time zero. Let Tr be the remaining time until the next inspection since time U , which

marks the onset of noncompliance. Due to memorylessness, T and Tr are identically distributed:

Tr � exp(�). Under FD, the �rm�s expected pro�t per cycle is E [�] = rE [U ] = r
� since production

lasts only up until noncompliance occurs. Under ND, on the other hand, the �rm�s expected pro�t

per cycle is E [�] = rE [U ] + rE [min fTr; Dg] � �Pr (Tr � D) = r
� +

r���
�+� , re�ecting the possibility

that noncompliance is detected before it concludes (the event Tr � D). Since the cycle length is

E [U +D] = 1
� +

1
� under both ND and FD, the corresponding long-run average costs for the �rm are:

	
�
= r � E[�]

E[U ]+E[D] =
r�
�+� under FD and 	

�
= r � E[�]

E[U ]+E[D] =
�
�+�

r+��
��+1 under ND. Comparing the

two expressions, we �nd that the �rm (weakly) prefers FD if � � r� . Next, we derive the performance

measures under ND and FD. Consider FD. Since all noncompliance episodes are disclosed, there

exists no unsuspended noncompliance: hence, the expected durations of suspended and unsuspended

noncompliance in a cycle are, respectively, E [R] = E [D] = 1
� and E [B] = 0. Consequently, R =

E[R]
E[U ]+E[D] =

1=�
1=�+1=� =

�
�+� and B = 0. To compute I, note that inspections are performed only for the

duration of U in a cycle since, unde FD, inspections are suspended as soon as noncompliance occurs.
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Hence, the expected number of inspections performed in a cycle is equal to E [I] = �E [U ] = 1
�� and it

follows that I = E[I]
E[U ]+E[D] =

1=��
1=�+1=� =

�
�+�

1
� . Now consider ND. As we noted above, the probability

of detection in a cycle is Pr (Tr � D). Then E [R] = E [D] Pr (Tr � D) = 1
�

�
�+� =

1
�

1
��+1 and E [B] =

E [min fTr; Dg] = 1
�+� =

�
��+1 . Hence, R =

E[R]
E[U ]+E[D] =

�
�+�

1
��+1 and B =

E[B]
E[U ]+E[D] =

�
�+�

��
��+1 . To

compute I, recall from above that the expected number of inspections for the �rst U time units in a

cycle is �E [U ] = 1
�� . In the next D time units the regulator performs at most one inspection: zero in

the event Tr > D and one in the event Tr � D. The latter is true because inspections are suspended

following a detection (the event Tr � D). Therefore, the expected number of inspections in a cycle is

E [I] = �E [U ]+1�Pr (Tr � D) = 1
�� +

1
��+1 . Then I =

E[I]
E[U ]+E[D] =

1=(��)+1=(��+1)
1=�+1=� = �

�+�

�
1
� +

�
��+1

�
.

Proof of Proposition 2. Fix �. Let C
�
� and C

�
+ denote C

�
de�ned in (4) for the regions � � �

r

and � > �
r , respectively. Evaluating C

�
� and C

�
+ at the boundary � =

�
r and subtracting them yield

C
�
+ � C

�
� =

�
�

��r
� + h� r

� ��
��+r > 0, implying that C

�
is discontinuous at � = �

r , jumping upwards

as � crosses �
r from left to right. Hence, C

�
� < C

�
+ in the vicinity of � =

�
r . Suppose � �

�
r . From

(4) we see @C
�
�

@� < 0, which implies that C
�
� is minimized at the boundary � = �

r . Now suppose

� > �
r . Di¤erentiating C

�
+ and setting it to zero yields the solution �

z =

�r�
h�r
� � �

�
��
��� � �

��1
.

Substituting � z in the second derivative, we get @2C
�
+

@�2

����
�=�z

= 2�
�3

�
1� �

�

�
1

��+1 > 0, which implies

that the unique critical point � z is a local minimizer of C
�
+. It can be veri�ed that lim�!0C

�
+ = 1,

lim�!1C
�
+ =

h�
� , lim�!0

@C
�
+

@� = �1, and lim�!1
@C

�
+

@� = 0; hence, � z is the unique interior minimizer

of C
�
+ in the expanded region � 2 (0;1). Whether � z is also the global minimizer depends on the

conditions � z � �
r and �

z > �
r . In the former case C

�
+, de�ned in the region � >

�
r , is increasing in � ;

together with the facts that C
�
� is minimized at � =

�
r and that C

�
� < C

�
+ in the vicinity of � =

�
r ,

this implies that C
�
is minimized at � = �

r . In the latter case, C
�
+ is minimized at the interior point

� z > �
r while C

�
� is minimized at � =

�
r . Given that C

�
� < C

�
+ in the vicinity of � =

�
r , there are

two candidates for the global minimizer: � = �
r and � = � z. Evaluating C

�
at these values, we get

C
�
1 =

r�
� +

�r
�

�
1� �

�

�
at � = �

r and C
�
2 =

r�
� ��(��2�)+2�

r�
h�r
� � �

��
1� �

�

�
� at � = � z. Then

� z is the global minimizer if and only if C
�
2 < C

�
1, which is equivalent to the condition � < r�

y where

� y =

�
2

r�
h�r
� � �

�
��
��� +

��
��� � �

��1
. Note that, since � y < � z, this condition implies � < r� z

or � z > �
r , which ensures the local minimum at � = � z. Summarizing, the global minimizer of C

�
is

found at � = � z if � < r� y while it is at � = �
r if � � r�

y. The corresponding reduced social cost is

C
��
= r�

� � �(�� 2�) + 2�
r�

h�r
� � �

��
1� �

�

�
� if � < r� y and C

��
= r�

� +
�r
�

�
1� �

�

�
if � � r� y.

Notice that C
��
for � < r� y is independent of � whereas for � � r� y it decreases in �. Hence, as �
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increases from zero to in�nity, C
��
stays constant for � < r� y and then decreases afterwards. Next,

we incorporate the maximum penalty constraint � � r� in �nding � that minimizes C��. Two cases

need to be considered separately: � < � y and � � � y. If � < � y, the maximum penalty constraint

implies � < r� y, the region in which C
��
does not vary with �. Hence, the minimum is found at any

value of � satisfying � � r�. Recall from above that the optimal � in this case is � = � z since � < r� y.

If � � � y, on the other hand, the constraint � � r� includes the region in which C�� decreases in �.

Hence, C
��
is minimized at the constraint boundary � = r�. Recall from above that the optimal �

in this case is � = �
r = � since � = r� � r�

y. Summarizing, it is optimal for the regulator to choose

� 2 [0; r�] and � = � z if � < � y and to choose � = r� and � = � if � � � y. The �rm�s optimal response

to this choice follows directly from Lemma 3.

Proof of Proposition 3. First consider periodic inspections. Recall from Proposition 1 that

�p = max f�;b�g, where we suppressed the argument in b�(�) for notational convenience. Suppose
� < b� . Then �p = b� , which satis�es G(b� j�) = �

� � 1 (Proposition 1). Implicit di¤erentiation of this

equation yields db�d� = � @G(� j�)=@�
@G(� j�)=@�

���
�=b� , which we now show to be negative. In the proof of Proposition

1 we showed that the numerator satis�es @G(� j�)@�

���
�=b� > 0. Next, observe that the denominator satis�es

@G(� j�)
@�

���
�=b� = �

�
1� 2�b� �+�2 + h�r

� b�� 1�e���b� > �+�
�
h�r
�� �

2�b�
�

��
1+�� > �+�

�
h�r
�� � 2

�
��
1+�� > 0,

where the �rst inequality follows from 1 � e�x > x
1+x , the second inequality from the assumption

� < b� stated above, and the third from the assumptions h�r
�� > �

� and
�
� � 1 stated in §3 which

together imply h�r
�� > 2. Therefore, db�d� < 0, i.e., b� decreases in � if � < b� . Next, suppose � > b� .

Then �p = �, which increases in �. In summary, �p decreases in � for � < b� while it increases in � for
� > b� , reaching the minimum at � = b� . According to Proposition 1 full disclosure occurs if and only
if � � b� , when sp = �p = �. Since � de�ned in (3) is an increasing function of �, the statements in
the proposition about �p follow. Now consider random inspections. Proposition 2 states that � r = � z

if � < � y while � r = � if � � � y, where � z is independent of �. Hence, � r does not vary in � for � < � y

while it increases in � for � � � y. From the same proposition we also see that the latter condition

is su¢ cient and necessary for full disclosure. Note also that � y < � z. Then � r jumps downward at

� = � y because, at that boundary, lim�!(�y)� �
r = � z > � y = � = lim�!(�y)+ �

r.

Proof of Proposition 4. First consider � in the vicinity of zero. If � = 0, the �rm chooses nondis-

closure in equilibrium under both inspection policies (Proposition 1 and Proposition 2). Moreover,

the equilibrium mean inspection intervals �p > 0 and � r > 0 with nondisclosure are both unique

local minimizers of the corresponding long-run average social costs, denoted by C
N
p (�) and C

N
r (�)

for periodic and random inspections, respectively. Under periodic inspections C
N
p (�) =

h�
� + �

� �
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�
�

��
� + h� r

�
1�e���
�� , obtained by applying the nondisclosure condition s = 0 in (2). Under random

inspections, C
N
r (�) =

h�
� + �

� �
�
�

��
� + h� r

�
1

��+1 (see (4)). From the inequality 1 � e�x > x
x+1

we see that C
N
r (�) � C

N
p (�) =

�
�

��
� + h� r

� �
1�e���
�� � 1

��+1

�
> 0. Since C

N
p (�) < C

N
r (�) for any

given � > 0 we have C
N
p (�

p) < C
N
p (�

r) < C
N
r (�

r), i.e., the minimum of C
N
p (�) is smaller than

the minimum of C
N
r (�). Hence, C

p
< C

r
when � = 0. Now consider increasing � in�nitesimally

from zero, which relaxes the maximum penalty constraint � � r�. Recall from Proposition 1 that

this constraint binds in equilibrium under periodic inspections. Hence, increased � leads to higher

penalty which in turn enlarges the disclosure window sp (see Proposition 1). From (2) we see that

this change lowers the regulator�s objective function C
p
. By contrast, under random inspections the

constraint does not bind and C
r
is independent of � if � is su¢ ciently small (see Proposition 2 and

(5)). Hence, an in�nitesimal increase in � does not change C
r
. Combined with the earlier �nding

that C
p
< C

r
when � = 0, these observations imply that the di¤erence C

r � Cp becomes larger

when � is increased by a small amount. Therefore, C
p
< C

r
for � near zero. Next, consider � away

from zero. If � is su¢ ciently large, the �rm chooses full disclosure in equilibrium under both in-

spection policies (Proposition 1 and Proposition 2). Let C
F
p (�) and C

F
r (�) be the long-run average

social costs under periodic and random inspections with full disclosure. Under periodic inspections

C
F
p (�) =

r�
� �

��
2 +

�
�

�
1� �

�

�
, obtained by applying the full disclosure condition s = � in (2). Under

random inspections, C
F
r (�) =

r�
� +

�
�

�
1� �

�

�
(see (4)). From Proposition 1 and Proposition 2 we see

that the equilibrium mean inspection intervals with full disclosure are �p = 1
� ln (1 + ��) and �

r = �.

Thus, C
p
= C

F
p (�

p) = r�
� �

��
2 +

��
ln(1+��)

�
1� �

�

�
and C

r
= C

F
r (�

r) = r�
� +

�
�

�
1� �

�

�
for given �. Then

we have C
p � Cr = ��

�
1

ln(1+��) �
1
��

� ���
� � 1

�
� 
(��)

�
, where 
(y) � y=2

y= ln(1+y)�1 is an increasing

function. Recall the assumption �� < by from §3.3, where by uniquely solves the equation 
(y) = �
� � 1.

Then 
(��) < 
(by) = �
� � 1; with �� > ln(1 + ��), this implies C

p � Cr > 0. Therefore, Cp > Cr for

su¢ ciently large �.

Proof of Lemma 4. Let us use the subscripts p and r to denote periodic and random inspections,

respectively. First consider the case where the �rm chooses nondisclosure. This corresponds to s� = 0

under periodic inspections. Setting s� = 0 in the expressions in Lemma 1 yields Ip =
�

��+�(�) and

Rp =
�(�)

��+�(�) . Under random inspections, on the other hand, Ir =
�
�+�

�
1
� +

�
��+1

�
and Rr = �

�+�
1

��+1

(Lemma 3). In both cases, C = �I + rR + hB = h �
�+� + �I � (h � r)R since B + R = �

�+� . From

the inequalities x
x+1 < 1 � e�x < x, it follows that �(t) de�ned in (1) satis�es �

�+�+1=t < �(t) < �t.

Then Ip � Ir = �
��+�(�) �

�
�+�

�
1
� +

�
��+1

�
< �

�+�

�
�+�

��+�(�+�+1=�) �
�+�+1=�
��+1

�
= 0 and Rp � Rr =

1
��=�(�)+1�

�
�+�

1
��+1 >

�
�+�

��
��
�

1
(�+�)� + 1

�
+ �

�+�

��1
� 1

��+1

�
= 0. Since Ip < Ir and Rp > Rr, we

have Cp < Cr, i.e., the long-run average social cost is lower under periodic inspections. Next, consider
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the case of full disclosure. This corresponds to s� = � under periodic inspections. Setting s� = � in

the expressions in Lemma 1 yields Ip =
��
�+�

e���

1�e��� and Rp =
�
�+� . Under random inspections, on the

other hand, Ir =
�
�+�

1
� , Rr =

�
�+� (Lemma 3). Since

e���

1�e��� <
1
�� , we have Ip < Ir. Combined with

Rp = Rr, this implies Cp < Cr.

B Performance Measures Under Periodic Inspections

In this section we derive the expectations of the performance measures X, I, R, B, and 	 (summa-

rized in Lemma 1) assuming that the �rm employs the threshold disclosure policy in response to the

regulator�s periodic inspections. In the lemmas and proofs below, U and D refer to the exponential

i.i.d. random variables with means 1=� and 1=� representing the duration of each compliance and non-

compliance episode, respectively. The Cases 1a, 1b, 2a, 2b, and 2c refer to the �ve possible outcomes

in an inspection cycle, as described in §4.1.1 and in Figure 2.

B.1 Probability of Each Outcome in an Inspection Cycle

Lemma B.1 The probability of each case in an inspection cycle is as follows: (i) Pr (1a) = e��s (1� � (� � s));

(ii) Pr (1b) = (1�e��s) (1� � (� � s)); (iii) Pr (2a) = e��s� (� � s); (iv) Pr (2b) = �
���

�
e��s � e��s

�
� (� � s);

(v) Pr (2c) =
�
1� �

���e
��s + �

���e
��s
�
� (� � s), where �(t) is de�ned in (1).

Proof. In Cases 1a and 1b the �rm is in compliance at both time zero and time ��s, an event that oc-

curs with probability 1�� (� � s). On the other hand, in Cases 2a, 2b, and 2c the �rm is in compliance

at time zero but is in noncompliance at time ��s, an event that occurs with probability � (� � s). Us-

ing the memoryless properties of these random variables, from Figure 2 we see that the probabilities for

the �ve cases are: (i) Pr (1a) = Pr (U > s) (1� � (� � s)); (ii) Pr (1b) = Pr (U � s) (1� � (� � s)); (iii)

Pr (2a) = Pr (D > s) � (� � s); (iv) Pr (2b) = Pr (D � s < D + U) � (� � s); (v) Pr (2c) = Pr (D + U � s) � (� � s).

It remains to evaluate the conditional probabilities. Along with Pr (U > s) = e��s and Pr (D > s) =

e��s, we have Pr (D � s < D + U) = �
���(e

��s�e��s) and Pr (D + U � s) = 1� �
���e

��s+ �
���e

��s.

B.2 Expected Length of an Inspection Cycle

Lemma B.2 The conditional expected length of an inspection cycle for each case in an inspection

cycle is as follows: (i) E [Xj1a] = � ; (ii) E [Xj1b] = � � s
1�e��s +

1
� +

1
� ; (iii) E [Xj2a] = � +

1
� ; (iv)

E [Xj2b] = � ; (v) E [Xj2c] = � � (���)s�(e��s�e��s)
�(1�e��s)��(1�e��s) +

1
� +

2
� . Unconditioning, the expected length of

an inspection cycle is E [X] = � � s+
�
1
� +

1
�

�
(1� e��s) +

�
1
� �

�+�
�(���)(e

��s � e��s)
�
� (� � s).

Proof. In Case 1a and Case 2b a cycle takes � time units as no disclosure or detection occurs by

then. In Case 2a the cycle that starts at time 0 ends after noncompliance is detected at time � and
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until compliance is restored, which in total takes � + 1=� time units in expectation. (The residual

noncompliance duration after � is exponentially distributed with mean 1=� due to memorylessness

of D.) Consider Case 1b. The cycle lasts at least � � s time units, after which it lasts until the

noncompliance episode that starts between times � � s and � concludes. Let Z be the residual

compliance duration starting from time � � s. Then Z is exponentially distributed with mean 1=�

because of memorylessness of U . The expected duration from time � � s until compliance restoration

conditional on Z � s is E [ZjZ � s] + E [D] =
R1
0 zfZ (zjZ � s) dz +

1
� =

R s
0 z

�e��z

1�e��sdz +
1
� =

1
� �

se��s

1�e��s +
1
� , where fZ (zjZ � s) =

fZ(z)
FZ(s)

de�ned on the support [0; s] is the truncated distribution of Z

(Mood et al. 1973, p. 124). Hence, the expected cycle length of Case 1b is ��s+E [ZjZ � s]+E [D] =

� � s
1�e��s +

1
� +

1
� . Finally, consider Case 2c. The cycle lasts at least � � s time units, after

which it lasts until the state makes three transitions: to compliance and then to noncompliance

between times � � s and � , and then back to compliance again. Let Y be the residual noncompliance

duration starting from time � � s which is exponentially distributed with mean 1=�. Noting that

the pdf and the cdf of the random variable Y + U are fY+U (z) =
��
���

�
e��z � e��z

�
and FY+U (z) =

1� �e��z��e��z
��� (Ebeling 2009, p. 235), the expectation of the truncated random variable Y +U � s is

E [Y + U jY + U � s] =
R1
0 zfY+U (zjY + U � s) dz =

R s
0 z

fY+U (z)
FY+U (s)

dz = e��s�e��s�s(�e��s��e��s)
�(1�e��s)��(1�e��s) + 1

� +

1
� . Hence, the conditional expected length of a renewal in this case is � � s+E [Y + U jY + U � s] +

E [D] = � � (���)s�(e��s�e��s)
�(1�e��s)��(1�e��s) +

1
� +

2
� . Finally, E [X] is obtained by unconditioning the conditional

expectations using the probabilities computed in Lemma B.1 and collecting terms.

B.3 Expected Number of Inspections Performed in an Inspection Cycle

Lemma B.3 The expected number of inspections performed in an inspection cycle is E [I] = e��s +
�
���(e

��s � e��s)� (� � s).

Proof. Since exactly one inspection is performed in Cases 1a, 2a, and 2b whereas none in Cases 1b

and 2c (as a disclosure suspends inspections), the expected number of inspections performed per cycle

is Pr (1a) + Pr (2a) + Pr (2b). Then the result follows from Lemma B.1.

B.4 Expected Duration of Suspended Noncompliance in an Inspection Cycle

Lemma B.4 The expected duration of suspended noncompliance in an inspection cycle is E [R] =
1�e��s
� + �e��s��e��s

�(���) � (� � s).

Proof. Noncompliance is reported either by a detection or a disclosure. Thus, only Cases 1b,

2a, and 2c are relevant. Because of memorylessness of D, in each case the expected duration of a

residual noncompliance duration after a report is equal to 1=�. Accounting for all cases, E [R] =

1
� [Pr (1b) + Pr (2a) + Pr (2c)]. Then the result follows from Lemma B.1.
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B.5 Expected Duration of Unsuspended Noncompliance in an Inspection Cycle

Lemma B.5 The expected duration of unsuspended noncompliance in an inspection cycle is E [B] =
�
�+� (� � s) +

�
1�e��s
� � 1

�+�

�
� (� � s).

Proof. The expected duration of noncompliance between time 0 and time � �s is (Nakagawa 2005, p.

45) E
hR ��s
0 1(noncompliance at t)dt

i
=
R ��s
0 E [1(noncompliance at t)] dt =

R ��s
0 Pr (noncompliance at t)

=
R ��s
0 �(t)dt = �

�+� (� � s) �
1

�+�� (� � s). Since the noncompliance episodes that start before time

� � s is unreported, this expected duration is common in all �ve cases of Figure 2. Now consider

the disclosure window [� � s; � ]. In Cases 1a, no noncompliance exists in the window, contributing

zero to E [B]. In Case 1b, any noncompliance episode that starts within the window is reported;

hence, this case does not contribute to E [B]. In Case 2a, noncompliance duration is greater than

the window; hence, this case contributes s to E [B]. In Cases 2b and 2c, the conditional expected

duration of noncompliance in [� � s; � ] is equal to E [DjD < s] =
R s
0 x

�e��x

1�e��sdx =
1
� �

se��s

1�e��s . Uncon-

ditioning using Lemma B.1 and adding the �rst result above yields E [B] =
R ��s
0 �(t)dt + sPr (2a) +

E [DjD < s] (Pr (2b) + Pr (2c)) = �
�+� (� � s) +

�
1�e��s
� � 1

�+�

�
� (� � s).

B.6 Firm�s Expected Cost in an Inspection Cycle

Lemma B.6 The �rm�s conditional expected pro�t per inspection cycle for each case is as follows:

(i) E [�j1a] = r� ; (ii) E [�j1b] = r
�
� � s

1�e��s +
1
�

�
; (iii) E [�j2a] = r� � �; (iv) E [�j2b] = r� ;

(v) E [�j2c] = r

�
� � (���)s�(e��s�e��s)

�(1�e��s)��(1�e��s)
+ 1

� +
1
�

�
. Unconditioning, the �rm�s expected cost per

inspection cycle (including the penalty and the opportunity costs) is E [	] = rE [X]�E [�] = r 1�e��s� +�
r�e

��s��e��s
�(���) + �e��s

�
�(� � s):

Proof. In Case 1a and Case 2b production continues until time � , when the inspection cycle ends

with no disclosure or detection. Hence the expected pro�t is r� . In Case 1b production continues until

the �rm discloses noncompliance at its onset which then lasts D additional amount of time before

the cycle ends. Therefore, production expects to last E [Xj1b] � 1
� and consequently the expected

pro�t is r
�
E [Xj1b]� 1

�

�
. Similarly, in Case 2c the expected pro�t is r

�
E [Xj2c]� 1

�

�
. In Case 2a

production continues until time � , when noncompliance is detected. Upon detection, the �rm pays

the �xed penalty �. Therefore, the expected pro�t in Case 2a is r� � �. The expressions for Cases

1b and 2c are obtained using the results in Lemma B.2. Finally, E [	] = rE [X] � E [�] is obtained

by unconditioning the conditional expectations using the probabilities computed in Lemma B.1 and

collecting terms.
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Technical Appendix
Time to Come Clean? Disclosure and Inspection Policies for Green Production

C Additional Results and Proofs
Lemma C.1 (For the proof of Proposition 1) Let '(x) � 1

x3

�
(2� b)ex � 2� 2x� x2

�
(3� x) where

0 � b � 2. Then '(x) < 1 for all x > 0.

Proof. Suppose b = 0. Applying l�Hopital�s rule repeatedly,

lim
x!0

'(x) = lim
x!0

2(ex�1�x)(3�x)�2(ex�1�x)+x2
3x2

= 1
3 + limx!0

(4�2x)(ex�1�x)
3x2

= 1
3 + limx!0

�2(ex�1�x)+(4�2x)(ex�1)
6x

= 2
3 + limx!0

(2�2x)(ex�1)
6x = 2

3 + limx!0
�2(ex�1)+(2�2x)ex

6 = 1� 1
3 limx!0

xex = 1

and similarly limx!1 '(x) = 1 � 1
3 limx!1 xe

x = �1. Also, '0(x) = �(x)
x4
, where �(x) � 18 + 8x +

x2 �
�
18� 10x+ 2x2

�
ex. Observe

�(x) = 18 + 8x+ x2 �
�
18� 10x+ 2x2

� �P1
n=0

xn

n!

�
= 18 + 8x+ x2 � 18

�P1
n=0

xn

n!

�
+ 10

�P1
n=0

xn+1

n!

�
� 2

�P1
n=0

xn+2

n!

�
= 18 + 8x+ x2 � 18

�
1 + x+

P1
n=0

xn+2

(n+2)!

�
+ 10

�
x+

P1
n=0

xn+2

(n+1)!

�
� 2

�P1
n=0

xn+2

n!

�
= x2 +

P1
n=0

�
�18

(n+2)(n+1) +
10
n+1 � 2

�
xn+2

n! = x2 � 2x2
�P1

n=0
(n�1)2
(n+2)! x

n
�

= x2 � 2x2
�
1
2 +

P1
n=2

(n�1)2
(n+2)! x

n
�
= �2x2

P1
n=2

(n�1)2
(n+2)! x

n < 0

for x > 0, implying '0(x) = �(x)
x4

< 0. Since '(x) starts from one at x = 0 and decreases to �1 as
x ! 1, we conclude '(x) < 1 for all x > 0 if b = 0. Now suppose 0 < b � 2. Observe that the
numerator of '(x) is equal to �3b < 0 at x = 0. Hence, limx!0 '(x) = �1. Applying l�Hopital�s
rule repeatedly, we also have limx!1 '(x) = 1 � 2�b

6 limx!1 xex = �1. Di¤erentiating, '0(x) =
1
x4

�
18 + 8x+ x2 � (2� b)

�
9� 5x+ x2

�
ex
�
. Therefore, '0(x) = 0 is equivalent to �(x) = 2� b where

�(x) � x2+8x+18
x2�5x+9 e

�x. Note �(0) = 2, limx!1 �(x) = 0, and �0(x) = � x3(x+3)e�x

(x2�5x+9)2 < 0. Since �(x)
decreases from 2 to zero as x goes from zero to in�nity and 0 < b � 2, there is exactly one solution to
�(x) = 2�b. This implies that there is exactly one x that solves '0(x) = 0, i.e., exactly one critical point
of '(x) exists. Given that limx!0 '(x) = limx!1 '(x) = �1, this critical point is a maximizer, which
we denote as bx. Evaluating '(x) at this point yields '(bx) = 1bx3

� bx2+8bx+18bx2�5bx+9 � 2� 2bx� bx2� (3� bx) =
(bx�3)2
(bx�3)2+bx < 1. Since the maximum of '(x) is smaller than one, we conclude '(x) < 1 for all x > 0 if
0 < b � 2.

Lemma C.2 (For §4.1.2) For �xed � , if � < r
� (e

�� � 1) then I� and B� decrease in � whereas R�

and 	
�
increase in �. If � � r

� (e
�� � 1), on the other hand, I�, R�, B�, and 	� do not vary with �.

Proof. From Lemma 2 we have s� = � if � � 1
� ln

�
1 + ��

r

�
or equivalently � � r

� (e
�� � 1). Substi-

tuting this in the expressions in Corollary 1 yields I
�
=
�
1� �

�

�
1
� �

�
2 , R

�
= �

� , B
�
= 0, and 	

�
= r�

� .

Notice that all measures are independent of �. If � > 1
� ln

�
1 + ��

r

�
or equivalently � < r

� (e
�� � 1),
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on the other hand, s� = 1
� ln

�
1 + ��

r

�
. Substituting this in the expressions in Corollary 1,

I
�
= 1

� �
�
�� ln

�
1 + ��

r

�
� �

�2�2

�
ln
�
1 + ��

r

�
� 1

2

�
ln
�
1 + ��

r

��2
+ r

r+�� � e
���

�
;

R
�
= �

�2�

�
ln
�
1 + ��

r

�
+ r

r+�� � e
���

�
; B

�
= �

� �
�
�2�

�
ln
�
1 + ��

r

�
+ r

r+�� � e
���

�
;

	
�
= r�

�2�

�
1 + ln

�
1 + ��

r

�
� r+��

r e���
�
:

Di¤erentiating I
�
yields @I

�

@� = �
��2

1
r+��

�
��� � ��

r+�� + ln
�
1 + ��

r

��
< � �

��2
��

(r+��)2
< 0, where we

used the condition � > 1
� ln

�
1 + ��

r

�
to establish the inequality. Di¤erentiating R

�
and B

�
yields

@R
�

@� = �@B
�

@� = �
��

��
(r+��)2

> 0. Finally, di¤erentiating 	
�
yields @	

�

@� = r�
�2�

�
r+��

�
1� r+��

r e���
�
> 0,

where we used the condition � > 1
� ln

�
1 + ��

r

�
to establish the inequality.

Lemma C.3 (For Proposition 1 in §4.1.2) The equilibrium exists in the region � � � and satis�es
� = r�. Consequently, the �rm sets s� = � in equilibrium.

Proof. Note that the social cost C� = �I�+ rR�+hB� can be written as C� = h�
� +�I

�� (h� r)R�

using the identity B = �
� � R. Let s(�) �

1
� ln

�
1 + ��

r

�
. We �rst prove that the equilibrium does

not exist for � < �. Suppose � < � and divide it into two regions: � < s(�) � � and s(�) �
� < �. The upper bound s(�) � � is imposed by the maximum penalty constraint � � r�. If
� < s(�) � �, according to Lemma 2 the �rm chooses s� = � and thus the social cost (2) reduces to

C
�
= �

�

�
r � ��

2

�
+
�
1� �

�

�
�
� , which is independent of � but decreases in � . Since C

�
keeps decreasing

in � in the considered region � < s(�), the minimum of C
�
, if it exists in � < �, should be found in

the next region s(�) � � < �. In this region the �rm chooses s� = s(�) according to Lemma 2. In
Lemma C.2 we proved that I

�
with s� = s(�) decreases in � while R

�
increases in �. Consequently C

�

decreases in � if s(�) � � < �, and because s(�) increases, the minimum of C�, if it exists in this region,
should satisfy s(�) = � where the maximum � is found. But from Lemma 2 we see that s(�) = �

implies s� = � , in which case the social cost (2) again reduces to C
�
= �

�

�
r � ��

2

�
+
�
1� �

�

�
�
� . Since

this function decreases in � for � < �, by the similar argument as above the minimum does not exist
in � < �, thus con�rming the statement we set out to prove. Now assume � � �. With the maximum
penalty constraint this condition requires s(�) � � � � . Since s(�) � � , from Lemma 2 we see that
the �rm chooses s� = s(�) and that C

�
decreases in �, by the same reasoning as above. Then the

minimum of C
�
satis�es s(�) = � in the considered region s(�) � � � � since C

�
keeps decreasing

as � goes up until s(�), which increases, reaches its upper bound �. Hence, the equilibrium exists for
� � � and it satis�es s(�) = � or equivalently � = r�, at which s� = s(�) = �.

Proposition C.1 The �rm employing the threshold disclosure policy under periodic inspections strictly
prefers immediate disclosure to delayed disclosure. Similarly, the �rm employing the binary disclosure
policy under random inspections prefers immediate disclosure to delayed disclosure.

Proof. (a) (Threshold disclosure policy under periodic inspections) Let delayed threshold dis-
closure policy be the modi�ed version of the threshold disclosure policy under which the �rm discloses
noncompliance after its onset. Speci�cally, this policy works as follows: for any new noncompliance
episode starting within the disclosure window, the �rm discloses it either at z > 0 time units after
its onset or at its conclusion, whichever happens �rst, unless it is �rst detected in the next scheduled
inspection. If the inspection arrives before both of these two disclosure opportunities, then the �rm
does not disclose it until being detected. We prove the proposition in three steps. First, we identify
the optimal policy among many possible delayed disclosure (�DD�) policies with di¤erent delay times.
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Second, we show that this optimal DD policy is weakly dominated by the nondisclosure (�ND�) pol-
icy, i.e., the threshold policy of De�nition 1 with s = 0. Finally, we show that ND policy is strictly
dominated by the policy of De�nition 1 with s > 0 (�original policy�). Without loss of generality we
examine an arbitrarily chosen inspection cycle (�cycle�), whose start time is set to zero. Suppose that
the disclosure window has a positive size, i.e., s > 0, and that a new noncompliance episode occurs
within the window. (We only consider such an instance because, otherwise, there is no noncompli-
ance to disclose under the threshold rule and therefore di¤erent disclosure policies lead to the same
result.) Let u 2 (� � s; �) be the start time of the �rst such instance and D be its duration, which
is exponentially distributed with mean 1=�. Since D is random, the noncompliance end time u +D
may or may not be before time � , when the next inspection is scheduled. Then under DD policy with
the delay z, this noncompliance episode is reported to the regulator at time u+min fD; z; � � ug; it
is disclosed if min fD; zg < � � u whereas it is detected otherwise. Consider two cases: z < � � u and
z � � � s. Suppose z < � � u. Then min fD; zg < � � u and therefore the �rm discloses the episode
at time u+min fD; zg. Since production is suspended immediately after disclosure and the �rm pays
the penalty � for late disclosure, his expected per-cycle pro�t is equal to rE [u+min fD; zg]��. Now
suppose z � � � u. Then the �rm discloses noncompliance if D < � � u while he does not disclose
and get detected if D � � � u. Hence, noncompliance is reported at time u + min fD; � � ug. As
before, production is suspended immediately after the report (via either disclosure or detection) and
the �rm pays the penalty; thus, the expected per-cycle pro�t is rE [u+min fD; � � ug]�� in this case.
Evaluating the expectations and combining the results, we �nd that, conditional on u 2 (� � s; �), the
�rm makes the expected per-cycle pro�t of ru+ r

�

�
1� e��minfz;��ug

�
��. Notice that this expression

increases in z for z < � � u until it becomes a constant afterwards, implying that under DD policy,
the expected per-cycle pro�t conditional on u 2 (� � s; �) is maximized at any z satisfying z � � � u.
We now show that setting z � � � u also maximizes the �rm�s long-run average pro�t. Observe the
following from Figure 2: (i) only Cases 1b and 2c in the �gure are impacted by replacing the original
policy with DD policy because the event we considered so far, i.e., a new noncompliance episode start-
ing within the disclosure window, arises only in those two cases; (ii) the cycle length in each of the two
cases remains unchanged because any new noncompliance episode starting within the disclosure win-
dow is eventually reported under DD policy, thus resetting the start of the next cycle to the end time
of the episode just as under the original policy; (iii) the probability of each of the two cases remains
unchanged because the underlying stochastic process is independent of the employed disclosure policy.
Recall that, by the renewal-reward theorem, the �rm�s long-run average pro�t is equal to the ratio of
the expected per-cycle pro�t and the expected cycle length; since the above observations imply that
the denominator of this ratio is unchanged while the numerator is maximized by having z � � � u for
any realized value of u 2 (� � s; �), we see that the long-run average pro�t is also maximized when
z satis�es the same condition. This condition states that the �rm discloses the new noncompliance
episode at or after the next scheduled inspection (u + z � �) regardless of its start time u, unless it
concludes before then (u+D < �). Note that the �rm is indi¤erent between detection and disclosure
at time � because in each case he incurs the penalty � and earns the identical revenue by time � .
Adopting the tie-breaking convention of detection over disclosure in such a case, we can summarize
the optimal policy within the class of DD policies as follows: if a new noncompliance episode starting
within the disclosure window concludes before the next scheduled inspection, then disclose it at its
conclusion; otherwise, do not disclose it and wait until being detected in the next inspection. Next,
we prove that the policy we just stated is weakly dominated by ND policy. As before, the only cases
in Figure 2 that are impacted by the choice of a disclosure policy are Cases 1b and 2c. For these cases,
under the optimal DD policy described above, noncompliance is detected at time � if D � � � u for
any given u 2 (� � s; �), whereas it is disclosed at time u+D if D < � � u. Under ND policy, on the
other hand, nondisclosure is detected at time � if D � � �u whereas it is never disclosed if D < � �u.
Therefore, the two policies di¤er only by whether or not noncompliance is disclosed when D < � � u:
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under the optimal DD policy the �rm discloses noncompliance at its conclusion and pay the penalty,
whereas under ND policy the �rm does not disclose it and avoids the penalty. The corresponding
per-cycle pro�ts are r(u + D) � � and r� , or equivalently the corresponding per-cycle opportunity
costs are �+ r(� � u�D) > 0 and zero, respectively. In addition, the corresponding cycle lengths are
u+D and � , respectively. Since the opportunity cost per unit time for Cases 1b and 2c is lower under
ND policy than under the optimal DD policy (zero vs. positive) for any realized value of u 2 (��s; �),
the long-run average cost for the �rm is also lower under ND policy. Hence, the �rm prefers ND policy
to the optimal DD policy and thus to any DD policy. Note that we arrived at this conclusion under
the assumption s > 0; if s = 0, then there is no distinction between the policies because disclosure
never happens. Therefore, ND policy weakly dominates DD policy. Finally, we show that ND policy
is dominated by the original policy. Note that ND policy is identical to the original policy with s set
to zero. In other words, the �rm�s long-run average cost under ND policy is exactly the same as 	
appearing in Corollary 1 with s = 0. But we proved in Lemma 2 that 	 with � > 0 is minimized at
s > 0; hence, the policy that requires s = 0 for 	 (ND policy) is strictly dominated by the policy that
does not (original policy). Then, since ND policy weakly dominates DD policy, the original policy
strictly dominates DD policy.

(b) (Binary disclosure policy under random inspections) The unit of the analysis in this
case is the compliance-noncompliance cycle of length U +D (see the proof of Lemma 3). Under DD,
the �rm discloses noncompliance z 2 (0; D] time units after the onset, incurring the late disclosure
penalty �. Consider two cases: Tr � D and Tr > D. If Tr � D, noncompliance is detected at time
U + Tr if Tr � z whereas it is disclosed at time U + z if Tr > z. In each case the penalty � is
incurred and production is suspended as soon as noncompliance is reported. Hence, the conditional
expected per-cycle pro�t is rE [U ] + rE [min fTr; zg]� �. If Tr > D, on the other hand, no detection
occurs but noncompliance is disclosed at time U + z. The corresponding conditional expected per-
cycle pro�t is rE [U ] + rz � �. Combining the two cases, the �rm�s expected pro�t per cycle is
rE [U ] � � + rE [min fTr; zg] Pr (Tr � D) + rz Pr (Tr > D). Notice that this quantity increases in z.
This implies that the �rm maximizes its expected per-cycle pro�t by delaying disclosure as much as
possible, i.e., disclose a noncompliance episode at its conclusion unless it is detected. However, this
policy is dominated by ND since the latter results in a saving of the penalty �, which is avoided if the
�rm does not disclose noncompliance at its conclusion, without a¤ecting the revenue. Therefore DD
is never optimal; it is dominated by ND. Note that, if � � r� , DD is also dominated by FD since in
this case FD dominates ND, which in turn dominates DD.
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